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Abstract

This paper provides a general study of a contest modeled as a multi-player

incomplete-information all-pay auction with sequential entry. The contest con-

sists of multiple periods. Players arrive and exert efforts sequentially to compete

for a prize. They observe the efforts made by their earlier opponents, but not

those of their contemporaneous or future rivals. We establish the existence and

uniqueness of a symmetric perfect Bayesian equilibrium (PBE) and fully char-

acterize the equilibrium. Based on the equilibrium result, we show that players’

ex ante expected efforts are, in general, nonmonotone with respect to their tim-

ing positions. However, a later mover always secures a larger ex ante expected

payoff. Further, we endogenize the timing of moves and show that all players

choose to move in the last period in the unique equilibrium that survives iterated

elimination of strictly dominated strategies (IESDS).
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1 Introduction

Many competitive activities resemble a contest, in which contenders strive to leapfrog

and their efforts are nonrefundable regardless of win or loss. Such phenomena are

widespread in socioeconomic contexts, ranging from electoral campaigns (Snyder, 1989);

lobbying (Che and Gale, 1998; Baye, Kovenock, and De Vries, 1993); internal labor

markets inside firms (Lazear and Rosen, 1981; Rosen, 1986; Green and Stokey, 1983);

and sporting events (Brown, 2011) to R&D races (Loury, 1979; Lee and Wilde, 1980;

Taylor, 1995; Fullerton and McAfee, 1999; Che and Gale, 2003).

Contest-like competitions in practice are often inherently sequential, in that con-

tenders enter and act in succession. Firms may enter a race successively for an innova-

tive technology. Consider, for instance, the recent race to develop Coronavirus vaccines.

Moderna/NIH, China’s CanSino Biologics, and the University of Oxford/AstraZeneca

PLC took the lead in entry.1 Promising results in early trials sparked strong enthusi-

asm and encouraged a massive global effort, with more than 200 candidates jumping

on the bandwagon. In an R&D project, a firm often has to decide on the intensity of its

efforts—e.g., the number of trials—before research progress materializes due to budget

requirements and resource planning, which cannot later be flexibly adjusted. Further,

firms’ actions are often subject to disclosure requirements or leaked to competitors.

For instance, EU countries typically require mandatory disclosure of firms’ R&D activ-

ities (La Rosa and Liberatore, 2014). In the United States, the Honest Leadership and

Open Government Act of 2007 amended the Lobbying Disclosure Act of 1995, which

strengthened public disclosure requirements regarding lobbying activities and funding.

On Taskcn, a leading crowdsourcing platform, a participant is given access to earlier

submissions (Liu, Yang, Adamic, and Chen, 2014), and an earlier entrant is fully aware

of the information spillover to future contenders.

Dynamic interactions arise in such scenarios. Later movers condition their actions

on prior moves, and an earlier mover shapes their strategies in anticipation of fu-

ture opponents’ reactions. These complicate strategical analysis of the contest game.

The complexity can be further compounded when the contest allows for richer timing

architectures: For instance, multiple players can enter and act in a single period simul-

taneously; they observe prior actions but not contemporaneous actions, which embeds

1See https://www.nytimes.com/2020/05/20/health/coronavirus-vaccines.html.
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simultaneous competitions in a dynamic structure. Consider a biopharmaceutical firm

that entered the race for Coronavirus vaccines in mid-2020; its research can presum-

ably leverage the efforts of pioneers, but not those of the many entrants that flooded

into the arena within the short time window. A full-fledged analysis involves sub-

stantial analytical subtlety, which confines the majority of previous studies to limited

settings—e.g., a two-player two-period structure.2,3

Sequential moves have spawned two related classical questions in oligopoly theory

(Amir and Stepanova, 2006). The first concerns players’ comparative payoffs with

respect to their timing positions; i.e., the earlier- vs. later-mover advantage (see, e.g.,

Gal-Or, 1987; Dowrick, 1986; Dixit, 1987). The second views the timing architecture

of an oligopoly as the endogenously determined outcome of players’ strategic choices

(see, e.g., Hamilton and Slutsky, 1990; Amir, 1995; Morgan, 2003), which addresses the

classical Cournot/Stackelberg debate. The conventional wisdom obtained in the usual

duopolistic settings, however, does not readily extend under more general sequential

structures and deserves to be reexamined. Shinkai (2000), for instance, considers a

three-firm, three-period model. He shows that players’ payoffs can be nonmonotone

along the sequence, which precludes a convenient answer in general to the question

regarding early- or later-mover advantage in oligopoly.

We consider a general contest game with sequential entry that imposes no restric-

tions on the number of players and accommodates a full spectrum of timing archi-

tectures. Analogous to standard static all-pay auction models—e.g., Moldovanu and

Sela (2001) and Moldovanu, Sela, and Shi (2007)—ex ante symmetric players strive

for a commonly valued prize and the highest bidder wins; players’ private types (abil-

ities) are independently and identically distributed, with higher ability yielding lower

marginal effort cost. The contest proceeds in multiple periods, and multiple players can

be clustered in a single period; all players within each period act simultaneously and

they observe earlier moves. A fully sequential contest and the standard simultaneous

benchmark boil down to special cases of our model. The unrestricted timing archi-

tecture introduces substantial game-theoretical subtleties that would be absent in the

2See, e.g., Dixit (1987); Baik and Shogren (1992); and Hoffmann and Rota-Graziosi (2012).
3Hinnosaar (2023) provides a remarkable exception.
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usual duopolistic settings.45 The literature has yet to provide an equilibrium analysis

of this game, and our paper fills the gap. The equilibrium result further enables us to

tackle the two aforementioned classical questions.

Findings and Implications: Summary Our paper first conducts a comprehensive

equilibrium analysis of the contest game with sequential entry described above. To meet

the analytical challenges posed by the dynamic interactions, we take advantage of the

recursive property of the payoff structure and convert the game into one that resembles

a simultaneous-move all-pay auction with an endogenously determined prize. The

pseudo prize is shaped by players’ ability distribution function and can be expressed as

a function of a player’s bid. Our model does not impose specific requirements on the

curvature of players’ ability distribution. This may cause irregularity in their payoff

functions and therefore discontinuity in their bidding strategies. Despite the nuance,

we establish that there exists a unique symmetric perfect Bayesian equilibrium (PBE)

in the game and provide a complete equilibrium characterization (Theorem 1). The

equilibrium result enables three applications that shed light on the fundamentals of

the contest game with sequential entry.

We first investigate whether a player in a later timing position would receive a higher

(lower) payoff than his earlier opponents. We establish that a payoff monotonicity

arises: Regardless of the prevailing contest architecture, a player ends up with a higher

ex ante expected payoff in a later timing position vis-à-vis an earlier one (Theorem 2).

Our result thus provides a formal argument for an unambiguous later-mover advantage

in the context of multi-player contests.

We then allow players to simultaneously commit to the timing of their moves prior

to the contest, which endogenizes the timing architecture of the contest. It deserves

4In a simple two-player sequential-move contest, the second mover, upon observing the first mover’s
effort, either simply matches the earlier effort or stays inactive. This property greatly simplifies the
equilibrium analysis. This, however, no longer holds when a third player is introduced to the contest.
Imagine a simple case with three players and fully sequential moves. Now the second mover cannot
simply match the earlier effort, which allows him to defeat the first mover but may not be optimal
given the threat from the third. The optimal response depends on his expectation of the future
competition. The literature has yet to provide an equilibrium analysis of this game, and our paper
fills the gap.

5Segev and Sela (2014) and Jian, Li, and Liu (2017) allow for multiple players but assume a fully
sequential structure. As previously noted, Hinnosaar (2023) provides a remarkable exception to the
literature that allows for an unrestricted timing architecture but assumes a lottery contest, which
differs from our setting.
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to note that despite the inherent overlap, the above-mentioned analysis—which es-

tablishes a later-mover advantage—does not address a player’s timing choice. The

later-mover advantage is obtained by comparing players’ ex ante expected payoff across

different periods under a given timing architecture. A player’s timing choice, however,

affects the timing architecture of the contest; as a result, the analysis requires that we

compare a player’s equilibrium expected payoffs across different timing architectures.

We formally verify that all players choose the last period for their moves, which con-

stitutes the unique equilibrium that survives iterated elimination of strictly dominated

strategies (Theorem 3). A fully simultaneous contest arises when each player makes

autonomous timing choices.

Finally, we generalize the model to allow for a hybrid payment rule that involves

both winner-pay and all-pay elements. Specifically, the winner of the contest is obliged

to pay the full cost of his own effort, while a loser may only pay a fraction of that.

Our analysis can readily be adapted to accommodate this extension to characterize the

equilibrium, as in Theorem 1. The main implications of the equilibrium are summarized

in Theorem 4 and are consistent with the insights obtained in Theorems 2 and 3. This

indicates that our main predictions do not rely on the all-pay feature of the baseline

model.

Link to the Literature This paper belongs to the small but burgeoning literature on

sequential contests. Dixit (1987); Baik and Shogren (1992); Morgan (2003); and Hoff-

mann and Rota-Graziosi (2012) all consider complete-information Tullock contests in

which two players move sequentially. Morgan and Várdy (2007) adopt a similar frame-

work but assume that the follower has to bear a small cost to observe the leader’s effort.

Glazer and Hassin (2000) allow for three-period sequential plays. Analysis of multi-

player sequential contests involves substantial technical difficulties, because standard

backward induction is to no avail. Kahana and Klunover (2018) apply an “inverted

best response” approach to a fully sequential lottery contest with multiple symmetric

players. Hinnosaar (2023) allows for a general setup that imposes no restrictions on

the prevailing timing architecture. Remarkably, he generalizes and formalizes Dixit’s

thesis that earlier players exert strictly higher efforts and are rewarded with strictly

higher payoffs, which results from the strategic substitutability of efforts in a symmetric

sequential lottery contest.
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Our paper examines a radically contrasting game theoretical context—i.e., all-pay

auctions—and provides a general and comprehensive analysis that imposes no restric-

tions on timing architectures and allows for a broader class of ability distribution func-

tions. All-pay auctions do not generate a continuous and well-behaved best-response

correspondence, unlike a lottery or a Tullock contest. Our results diverge from that

of Hinnosaar (2023): We demonstrate nonmonotonicity in equilibrium efforts and es-

tablish a later-mover advantage. Segev and Sela (2014) and Jian, Li, and Liu (2017)

both consider fully sequential incomplete-information all-pay auctions. Segev and Sela

(2014), assuming concave distribution functions, investigate how ex ante heterogeneous

players’ expected highest effort depends on the number of players and ability distri-

butions. Jian, Li, and Liu (2017), assuming that players’ type distribution function

takes a power functional form, compare ex ante symmetric players’ winning proba-

bilities with respect to the order of moves. Konrad and Leininger (2007) consider

two-stage multi-player complete-information all-pay auctions. They show that, as in

simultaneous-move contests, only the player with the lowest cost ends up with a pos-

itive expected payoff, while the payoff depends on his own timing position vis-à-vis

those of the others.

This paper contributes to the extensive literature on players’ comparative payoffs

with respect to their timing positions in sequential-move games—such as Gal-Or (1985,

1987); Dixit (1987); Dowrick (1986); Daughety (1990); Deneckere and Kovenock (1992);

Amir and Grilo (1999); Van Damme and Hurkens (1999, 2004); Amir and Stepanova

(2006); and von Stengel (2010), among many others—in various contexts, ranging from

quantity/capacity to price-setting competitions.6 As stated above, this strand of the

literature typically focuses on duopolistic rivalry. Shinkai (2000) extends the framework

to a three-firm, three-period setting and illuminates the nuance caused by the more

extensive sequence. To the best of our knowledge, our paper and Hinnosaar’s (2023)

are the few exceptions in the literature that examine earlier-/later-mover advantage

under an unrestricted timing architecture.

Our analysis adds to the literature on endogenous timing in oligopoly, such as

Hamilton and Slutsky (1990); Mailath (1993); Amir (1995); and Amir and Stepanova

(2006). A handful of studies explore this issue in contest settings, including Baik and

6Kempf and Rota-Graziosi (2010) consider a setting in which two jurisdictions set tax rates and
endogenize leadership in tax competitions.
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Shogren (1992); Leininger (1993); and Morgan (2003). All of these studies consider

two-player models. Konrad and Leininger (2007) allow for multiple contestants, but

impose a two-period structure.

The rest of the article is organized as follows. Section 2 sets up the model. Section 3

characterizes the equilibrium. Section 4 further delves into the fundamentals of this

contest game and applies our equilibrium results to the extended settings. Section 5

concludes. Proofs are relegated to the appendix.

2 The Model

A contest involves N ≥ 2 ex ante identical risk-neutral players, indexed by i ∈
N ≡ {1, . . . , N}. The players arrive sequentially and each exerts effort upon arrival to

compete for a prize of a unity value. The contest proceeds in T ≥ 1 period(s), and the

players are, accordingly, partitioned into T groups. Denote by Nt the set of players

in period t, and let nt := |Nt| ≥ 1 indicate the number of players in Nt. A player

observes the efforts sunk by his earlier opponents but not those in contemporaneous

or future periods. The architecture of the contest is fully described by a vector n :=

(n1, . . . , nT ), with N =
∑T

t=1 nt. The contest is fully sequential with n = (1, . . . , 1),

while it degenerates to a fully simultaneous one with n = (N).

A player i, when exerting an effort (or, interchangeably, a bid) bi ≥ 0, incurs a cost

c(bi) = bi/ai, where ai > 0 measures one’s ability and is privately known.7 Abilities

are drawn independently from an interval (0, 1] according to a common distribution

function F (·). We assume that F (·) admits a positive and continuous density f(·) ≡
F ′(·) and is piecewise analytic on [δ, 1] for all δ ∈ (0, 1).

Winner Selection Mechanism and Payoffs The competition is modeled as an

all-pay auction. The player with the highest effort wins. Specifically, a player i ∈ Nt,
when exerting an effort bi ≥ 0, is the sole winner if and only if (i) his effort is greater

than or equal to those in earlier periods—i.e., bi ≥ bj for j ∈ ∪t−1
k=1Nk—and (ii) his

7We follow the tradition in the contest literature and accommodate player heterogeneity in their
cost functions (e.g., Moldovanu and Sela, 2001, 2006; Moldovanu, Sela, and Shi, 2007; Brown and
Minor, 2014). It is noteworthy that the model is isomorphic to an alternative setting in which effort
is interpreted as bid in the auction literature: Players value the prize differently but bear the same
effort costs. All of our results remain qualitatively unchanged under this model specification.
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effort is strictly larger than those in contemporaneous and future periods—i.e., bi > bj

for j ∈ ∪Tk=tNk \ {i}. In the event that (i) multiple players in period t place the same

highest bid and (ii) no future players match that, the prize is randomly distributed

among them. To put it more formally, fixing a set of effort entries b ≡ (b1, . . . , bN),

contestant i’s winning probability is8

pi(b) :=


1, if bi ≥ maxj∈∪t−1

k=1Nk
{bj} and bi > maxj∈∪Tk=tNk\{i}{b

j},

1/m,
if bi ≥ maxj∈∪t−1

k=1Nk
{bj}, bi > maxj∈∪Tk=t+1Nk

{bj},
and bj is among the m highest of {bj}j∈Nt with a tie,

0, if bi < maxj∈∪tk=1Nk\{i}{b
j} or bi ≤ maxj∈∪Tk=t+1Nk

{bj},

(1)

and his ex post payoff, for a given ability level ai, is

pi(b)− bi/ai, for all i ∈ N . (2)

Equilibrium Concept We consider the solution concept of perfect Bayesian equi-

librium (PBE) for the contest game with sequential entry throughout the paper. We

focus on the symmetric equilibrium in which all players in the same period adopt the

same bidding strategy.

To put this formally, we fix an effort profile (bj)j∈∪t−1
k=1Nk

. Define βt := maxj∈∪t−1
k=1Nk

{bj}
for t ∈ {2, . . . , T}, and let β1 ≡ 0. In words, βt is the maximum effort in the contest

prior to period t. A symmetric PBE is denoted by {b∗t (a; βt)}Tt=1, where a is a player’s

ability and b∗t (a; βt) is the equilibrium bidding strategy for a player in period t. It is

noteworthy that the information available to a period-t player i is summarized by his

own type ai and the highest effort βt ≡ maxj∈∪t−1
k=1Nk

{bj} instead of the bidding history

prior to period t, i.e., (bj)j∈∪t−1
k=1Nk

: Only the maximum previous bid matters to a player

in an all-pay auction with sequential entry (see Equation (1)), so βt can be viewed as

a sufficient statistic for (bj)j∈∪t−1
k=1Nk

.

Besides the usual restrictions for PBE, we require that each player not update his

belief about contemporaneous and future rivals upon observing past effort levels and

his own type, either on or off the equilibrium path. This condition is sensible because

8The tie-breaking rule in (1) is asymmetric, which is commonly assumed in the literature (see, e.g.,
Andreoni, Che, and Kim, 2007; Simon and Zame, 1990; Maskin and Riley, 2000). The asymmetry
ensures well-defined best responses and the existence of an equilibrium, as in an asymmetric Bertrand
duopoly game.
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players’ abilities are independently distributed.9 Further, players’ payoffs in our setting

do not depend on their beliefs about earlier movers’ abilities. As a result, we do not

specify a belief system explicitly to define the PBE.

3 Equilibrium Analysis

In this section, we first lay out the fundamentals of the analysis and then formally

characterize the equilibrium.

3.1 Preliminaries of Equilibrium Analysis

This section sets up important primitives that lay the foundation for our equilibrium

analysis. We first introduce several notations that pave the way for our analysis and

discussion. We then present four preliminary results (Lemmas 1 to 4) that underpin the

main equilibrium results. Lemma 1 depicts the fundamentals of the bidding strategies

in a hypothetical symmetric PBE and enables subsequent analysis that relies on the

recursive nature of this contest game with sequential entry. Lemma 2 narrows the set of

equilibrium efforts. Lemmas 3 and 4 identify potential discontinuity in the equilibrium

bidding strategies.

Fixing a contest architecture n ≡ (n1, . . . , nT ), we define a sequence of functions

{Qt(b), a
∗
t (β), π̃t(b, a)}Tt=1, recursively, as follows:

QT (b) ≡ 1, Qt−1(b) := Qt(b)F
nt
(
a∗t (b)

)
,∀b ∈ [0, 1], (3)

a∗t (β) := max
{

0 < a ≤ 1 : π̃t(b, a) ≤ 0,∀b ∈ [β, 1]
}
, (4)

π̃t(b, a) := Qt(b)F
nt−1(a)− b/a. (5)

The sequence of functions {Qt(b), a
∗
t (β), π̃t(b, a)}Tt=1 is key to equilibrium character-

ization, and their implications will be revealed as the analysis unfolds. As a headstart,

the function a∗t (β) allows us to derive the threshold ability above (below) which a

period-t player stays active (inactive) in equilibrium. Let b ≥ 0 be the realized highest

effort by the end of period t ∈ T . Then Qt(b) gives the probability of effort b’s ex-

ceeding all subsequent efforts in a symmetric equilibrium. The function π̃t(b, a) lays a

9Note that for all totally mixed small perturbations of beliefs, a player’s beliefs about contem-
poraneous and future rivals must be equal to the prior, which implies that this belief satisfies the
consistency requirement under the solution concept of sequential equilibrium.
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foundation for equilibrium payoff characterization; it plays a critical role in identifying

the relevant range of equilibrium efforts and potential discontinuity in players’ bidding

strategies.

It can be verified from the above definition that a∗t (β) and Qt(b) are well defined

and satisfy the following properties:

(a) a∗t (β) is continuous, piecewise differentiable, and weakly increasing on [0, 1], sat-

isfying a∗t (β) ≥ β for all t ∈ T ; and

(b) Qt(b) is continuous, piecewise differentiable, and strictly increasing on [0, 1], with

Qt(0) = 0 and Qt(1) = 1 for all t ∈ T \ {T}.10

We hereby present four lemmas that pave the way for our equilibrium result.

Lemma 1 delineates useful properties of players’ bidding strategy in a hypothetical

symmetric PBE.

Lemma 1 (Properties of Equilibrium Bidding Strategy) Consider a contest

with sequential entry n ≡ (n1, . . . , nT ), and suppose that a symmetric PBE exists. A

period-t player’s equilibrium bidding strategy b∗t (a; βt) satisfies the following properties:

(i) b∗t (a; βt) is increasing in a on (0, 1);

(ii) b∗t (a; βt) = 0 for a ≤ a∗t (βt) and b∗t (a; βt) ≥ βt for a > a∗t (βt);

(iii) b∗t (a; βt) strictly increases with a on
(
a∗t (βt), 1

)
if nt ≥ 2.

Lemma 1(i) is intuitive: A stronger player tends to bid more aggressively. Lemma 1(ii)

reveals the nature of a∗t (·): A period-t player would stay active (inactive) in equilibrium

if his ability at exceeds (falls short of) the threshold a∗t (βt). Recall that a∗t (·) increases

with its arguments and βt is the maximum effort prior to period-t, which implies that

higher earlier effort elevates the threshold for active bidding, thereby discouraging fu-

ture competition. By Lemma 1(iii), when a period t involves two or more players,

one’s effort strictly increases with his ability provided that he is willing to place a

positive bid, i.e., a > a∗t (βt). Note that the strict monotonicity does not necessarily

hold in the case with nt = 1. To see this, consider a two-player sequential-move contest

10See the proof of Lemma 8 in the appendix for more details.
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n = (1, 1). The later mover simply matches the first mover’s effort β2 irrespective of

his own ability, provided that it exceeds a∗2(β2) = β2, i.e., b∗2(a; β2) = β2 for a > a∗2(β2).

Recall that b ≥ 0 denotes the realized highest effort by the end of period t ∈ T ,

which leads to an eventual win if and only if it exceeds all subsequent efforts from

period t+ 1. Lemma 1(ii) allows us to derive the equilibrium probability of this event.

By Lemma 1, b ends up as the eventual winning effort if and only if all subsequent

players stay inactive—i.e., every period-` player’s ability falls below the threshold a∗`(b),

∀` ∈ {t+ 1, . . . , T}—which occurs with a probability of ΠT
`=t+1F

n`
(
a∗`(b)

)
: Otherwise,

at least one player in later periods would stay active and exert an effort above b.

Notably, this probability can be expressed recursively, which boils down to the function

Qt(b) in (3). We formally establish this fact in the Appendix (see Lemma 7 in Appendix

A.1).

The property of Qt(b) enables us to exploit the recursive nature of this contest game

with sequential entry, which simplifies the equilibrium analysis. Consider a period-t

player with ability a > 0. In a symmetric PBE, by exerting an arbitrary effort b ≥ βt,

he earns an expected payoff11

πt(b, a; βt) := Qt(b)F
nt−1

(
(b∗t )

−1(b; βt)
)
− b/a. (6)

He wins with a probability Qt(b)F
nt−1

(
(b∗t )

−1(b; βt)
)
: As stated above, the effort b

allows him to beat future opponents with a probability Qt(b) and prevail over his

contemporaneous competitors with a probability F nt−1
(
(b∗t )

−1(b; βt)
)
.

The strategic interactions between a period-t player and his future opponents are

encapsulated in the provisional winning probability function Qt(·): His equilibrium

bidding strategy can be solved for as if he competed in a static contest for a prize

of a value Qt(b), which technically dissolves the dynamic linkages between contes-

tants across different periods. Despite the analogy, the pseudo prize value, Qt(b),

endogenously depends on the player’s own effort b, so the equilibrium bidding strategy

fundamentally differs from that in a standard static contest.

11The inverse function (b∗t )
−1(b;βt) is well defined by Lemma 1(iii) for b ≥ βt and nt ≥ 2. Note

that there is no need to specify (b∗t )
−1(b;βt) for the case of nt = 1 given that Fnt−1(a) = 1 for all

a ∈ (0, 1).
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3.1.1 The Set of Equilibrium Efforts

We now set out to narrow the set of equilibrium efforts. Consider a period-t player

with ability a > 0 who faces contemporaneous competition, i.e., nt ≥ 2. Recall the

function π̃t(b, a) in (5):

π̃t(b, a) ≡ Qt(b)F
nt−1(a)− b/a.

Fixing βt ≥ 0, we define

St(a; βt) :=
{
b ∈ [βt, 1] : π̃t(b, a) > π̃t(b

′, a),∀b′ ∈ (b, 1]
}
.

We will subsequently establish that any efforts outside those contained in St(a; βt) must

be suboptimal. Note that the set St(a; βt) is type-dependent and shrinks as ability a

increases, i.e., St(a
′; βt) ⊆ St(a; βt) for a < a′. Further, recall the piecewise analyticity

of the ability distribution F (·). This implies that Qt(b), and therefore π̃t(b, a), are

continuous and piecewise analytic with respect to b on [βt, 1]; St(a; βt), in turn, can be

expressed as the union of finitely many disjoint intervals. For ease of exposition, we

denote by mt(a; βt) ∈ N+ the number of disjoint intervals included in St(a; βt). Then

St(a; βt) can be written as

St(a; βt) =
[
s1
t (a; βt), e

1
t (a; βt)

)⋃[
s2
t (a; βt), e

2
t (a; βt)

)⋃
· · ·
⋃[
s
mt(a;βt)
t (a; βt), e

mt(a;βt)
t (a; βt)

]
,

with emt (a; βt) < sm+1
t (a; βt) for 1 ≤ m ≤ mt(a; βt)−1 and e

mt(a;βt)
t (a; βt) ≡ 1. Figure 1

graphically illustrates the set St(a; βt), in which case mt(a; βt) = 2. The following can

be obtained.

Lemma 2 (Set of Equilibrium Efforts) Consider a contest with sequential entry

n ≡ (n1, . . . , nT ) and suppose that a symmetric PBE exists. A period-t player’s equi-

librium effort must be contained within the above-defined set St(a; βt), provided that it

exceeds βt. That is, b∗t (a, βt) ∈ St(a; βt) if b∗t (a, βt) ≥ βt is continuous in the neighbor-

hood of a.

We verify this claim by the following argument. Suppose, to the contrary, that

b∗t (a, βt) /∈ St(a; βt). By definition, there exists some effort b′ > b∗t (a, βt) such that

π̃t(b
′, a) ≥ π̃t(b

∗
t (a, βt), a). We claim that the player’s payoff would strictly exceed the

11



π̃t(b, a)

b
s1
t (a; βt) e1

t (a; βt) s2
t (a; βt) e2

t (a; βt) ≡ 1βt

Figure 1: Illustration of St(a; βt).

value of the constructed function π̃t(b
′, a) when he deviates from b∗t (a, βt) to b′. This is

because the higher effort b′ increases not only the probability of outbidding his future

opponents but also that of beating the contemporaneous ones. More specifically, let

a′ be the maximum ability such that b∗t (a, βt) ≤ b′. Because the equilibrium bidding

strategy b∗t (a, βt) is strictly increasing and continuous around a, we can conclude that

a′ > a. In a symmetric PBE, the player’s actual expected payoff from the deviation ends

up as Qt(b
′)F nt−1(a′)−b′/a: In other words, he behaves as if he has an ability a′, which

allows him to defeat his contemporaneous opponents with a probability F nt−1(a′).

This payoff strictly exceeds π̃t(b
′, a) ≡ Qt(b

′)F nt−1(a)− b′/a and thus overshadows the

equilibrium payoff π̃t(b
∗
t (a, βt), a). Contradiction ensues.

3.1.2 Equilibrium Effort of Threshold Ability Type and Potential Discon-

tinuity

The set St(a; βt) is constructed as the union of a finite number of disjoint intervals,

which alludes to the possibility of discontinuity in a hypothetical equilibrium. The

following two lemmas shed light on these possibilities and show that any discontinuity

in a player’s equilibrium bidding strategy, whenever it exists, must arise at the end

points of these intervals.

We first establish that the smallest element in St(a; βt) is indeed the bid a player

of the threshold ability a = a∗t (βt) tends to place in equilibrium.

Lemma 3 (Equilibrium Effort at a∗
t (βt)) Consider a contest with sequential entry

12



b*t (a; βt)

0

1

b

a1a*t (βt)

mt(a; βt) = 1

βt

s1
t (a*t (βt), βt)

(a) Continuous Equilibrium Bidding Strategy

b*t (a; βt)

mt(a; βt) = 2mt(a; βt) = 1 mt(a; βt) = 1

b*t (a; βt)

0

1

b

βt a1a*t (βt)

s1
t (a*t (βt), βt)

ã

(b) Discontinuous Equilibrium Bidding Strategy

Figure 2: Illustration of Equilibrium Bidding Strategy b∗t (a; βt).

n ≡ (n1, . . . , nT ) and suppose that a symmetric PBE exists. If nt ≥ 2 and a∗t (βt) < 1,

then lima↘a∗t (βt) b
∗
t (a; βt) = s1

t (a
∗
t (βt); βt).

Because b∗t (a; βt) = 0 for a ≤ a∗t (βt), lima↘a∗t (βt) b
∗
t (a; βt) > 0 indicates a discon-

tinuity in bidding at a∗t (βt). Such discontinuity does not come as a surprise, since

it concerns itself with the behavior of the player of threshold ability who decides to

outbid βt. To see this, recall the two-player sequential-move example in Footnote 4:

The second mover matches the earlier effort when his type exceeds the threshold and

remains inactive otherwise. Discontinuity in bidding thus arises for the second mover

when his type equals the earlier bid.

The next lemma nevertheless suggests the possibility of discontinuity in a player’s

equilibrium bidding strategy when his ability exceeds the threshold a∗t (βt), which stems

from the dynamic nature of the game. Such discontinuity can even occur for the first

mover. In Section 3.3, we demonstrate that such discontinuity may indeed emerge in

equilibrium, but can only arise if the distribution function contains both concave and

convex parts. For notational convenience, we use b∗t (a−0; βt) and b∗t (a+0; βt) to denote

the left and right limits of b∗t (a; βt), respectively. We have the following.

Lemma 4 (Potential Discontinuity of Players’ Bidding Strategy) Consider

a contest with sequential entry n ≡ (n1, . . . , nT ) and suppose that a symmetric PBE

exists. Fix a period t with nt ≥ 2 and a player’s ability ã ∈ (a∗t (βt), 1]. If b∗t (ã−0; βt) =

emt (ã; βt) for some 1 ≤ m ≤ mt(ã; βt)− 1, then b∗t (ã+ 0; βt) = sm+1
t (ã; βt).

By Lemma 1, a period-t player, for a given βt, would increase his effort as his

ability ascends. When the effort is in the interior of the set St(a; βt), the player’s

13



bidding strategy would gradually increase with a for a > a∗t (βt), as Figure 2(a) illus-

trates. Recall that the set of eligible efforts St(a; βt) shrinks as a ascends (see Fig-

ure 2). When the player’s effort reaches the end of some interval in the set St(a; βt)—

i.e., emt (a; βt)—he would refrain from exerting an effort in the “undesirable” region(
emt (a; βt), s

m+1
t (a; βt)

)
; his effort jumps directly to the lower bound of the next adja-

cent interval in St(a; βt), i.e., sm+1
t (a; βt). This scenario is depicted in Figure 2(b).

To understand why the boundary of the set St(a; βt) can be played in the equilib-

rium, it is useful to further inspect the constructed function (5) and the equilibrium

payoff function (6). Consider a symmetric PBE. When a player’s effort increases, he

ends up with a higher probability of outperforming his contemporaneous opponents:

Such an equilibrium effect is nevertheless omitted in the expression of (5). Suppose

that all other players’ bidding strategies contain a jump from b] to b]] when one’s ability

increases. All efforts between b] and b]] would yield the same probability of winning

the contemporaneous competition. As a result, the aforementioned equilibrium effect

dissolves around the jump.

The jump predicted in Lemma 4 and Figure 2(b) is impossible in a Bayesian Nash

equilibrium of a static all-pay auction. The discontinuity, if it exists, largely stems

from the dynamic interaction in the game, which is captured by the provisional winning

probability function Qt(·) in the interim expected payoff (6).

3.2 Equilibrium Result: Existence, Uniqueness, and Charac-

terization

We are ready to verify the existence and uniqueness of a symmetric PBE in the con-

test game with sequential entry under an arbitrary contest architecture n ≡ (n1, . . . , nT )

and fully characterize it. Let qt(b) := Q′t(b).

Theorem 1 (Equilibrium of Contests with Sequential Entry) Consider a con-

test with sequential entry n ≡ (n1, . . . , nT ). There exists a unique symmetric PBE

{b∗t (a; βt)}Tt=1 of the contest game, which is fully characterized as follows:12

12The symmetric PBE is unique in the sense that if there exist two symmetric PBE of the contest
game—denoted by {b∗t (a;βt)}Tt=1 and {b∗∗t (a;βt)}Tt=1—then for all t ∈ T and βt ≥ 0, the collection of
ability a such that b∗t (a;βt) = b∗∗t (a;βt) has F -measure one.

14



(i) If nt = 1, then

b∗t (a; βt)


= 0, if a ≤ a∗t (βt),

= βt, if a∗t (βt) < a ≤ a∗∗t (βt),

∈ arg maxb>βt [Qt(b)− b/a], if a > a∗∗t (βt),

(7)

where a∗t (βt) is defined in (4) and can be simplified as a∗t (βt) = minb≥βt b/Qt(b),

and a∗∗t (βt) := supa∗t (βt)≤a≤1

{
a : Qt(βt)− βt/a > Qt(b

′)− b′/a,∀b′ ∈ (βt, 1]
}

.

(ii) If nt ≥ 2, then b∗t (a; βt) = 0 for a ≤ a∗t (βt). For a > a∗t (βt), b∗t (a; βt) increases

continuously and is governed by the following differential equation:

(nt−1)aF nt−2(a)f(a)Qt

(
b∗t (a; βt)

)
+aF nt−1(a)qt

(
b∗t (a; βt)

)
(b∗t )

′(a; βt)−(b∗t )
′(a; βt) = 0,

(8)

with the initial condition b∗t
(
a∗t (βt) + 0; βt

)
= s1

t

(
a∗t (βt); βt

)
. When b∗t (ã; βt) =

emt (ã; βt) for some ã ∈ (0, 1) and 1 ≤ m ≤ mt(ã; βt) − 1, b∗t (a; βt) jumps to

sm+1
t (ã; βt) at a = ã and then increases continuously from ã again according to

(8), with the initial condition b∗t
(
ã+ 0; βt

)
= sm+1

t (ã; βt).

Theorem 1 establishes the existence and uniqueness of a symmetric PBE in contests

with sequential entry. A player’s equilibrium bidding strategy depends on the number

of contemporaneous opponents. Theorem 1(i) considers a scenario in which a single

player arrives in a period, while Theorem 1(ii) addresses the case in which multiple

players are clustered in one set Nt. It is straightforward to observe that a player would

remain inactive if he is of low ability—i.e., a ≤ a∗t (βt)—in either scenario, as predicted

in Lemma 1(ii). The predictions diverge between the two scenarios when the player’s

ability is sufficiently high. With nt = 1, the player matches the highest prior bid βt

when his ability remains in an intermediate range—i.e., a∗t (βt) < a < a∗∗t (βt)—while he

strictly outbids βt if his ability exceeds the cutoff a∗∗t (βt). In contrast, with nt ≥ 2, he

strictly outbids βt whenever his ability exceeds a∗t (βt): Contemporaneous competition

compels him to step up effort to avoid a tie.

A closer look at Lemma 1 and Theorem 1 allows us to identify the set of players who

constantly stay inactive, i.e., exerting zero effort irrespective of their own types and

previous efforts. Recall from Lemma 1(ii) that a period-t player would be completely
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discouraged if his ability falls below a∗t (βt). Obviously, he would do so if a∗t (βt) = 1

for all βt ∈ [0, 1], which is equivalent to π̃t(b, 1) ≤ 0 for all b ∈ [0, 1] by (4). This

condition, together with (5) and F (1) = 1, implies Qt(b) ≤ b for all b ∈ [0, 1]. Let

T0 := {t ∈ T : Qt(b) ≤ b,∀b ∈ [0, 1]}. It can be verified that t′ ∈ T0 if t ∈ T0 and

t′ < t. Define t0 := max T0; it is obvious to infer 0 ≤ t0 ≤ T − 1.13 The following result

naturally ensues.

Proposition 1 (Players Who Always Remain Inactive) Consider a contest

with sequential entry n ≡ (n1, . . . , nT ). In the unique symmetric PBE {b∗t (a; βt)}Tt=1 of

the contest game, all players in periods 1 through t0 choose to stay inactive regardless

of their ability and the previous maximum bid, i.e., b∗t (a; βt) = 0 for all a ∈ (0, 1],

βt ∈ [0, 1], and t ∈ T0.

Proposition 1 states that players who arrive in early periods—i.e., t ≤ t0—always

stay inactive, regardless of their own types. These players obviously receive zero ex-

pected payoff in equilibrium, which alludes to a disadvantage of being earlier movers

in a contest. Players who arrive subsequently, in contrast, exert positive efforts with

positive probabilities.

We illustrate our equilibrium results in more specific settings.

Corollary 1 (Players Who Always Remain Inactive with Concave/Convex

Ability Distributions) Consider a contest with sequential entry n ≡ (n1, . . . , nT ).

The following statements hold in the unique symmetric PBE:

(i) Suppose that F (·) is continuous, twice differentiable, strictly concave, and satisfies

lima↘0[f(a)a] = 0. Then t0 = 0.

(ii) Suppose that F (·) is continuous, twice differentiable, and weakly convex. Then

t0 = T − 1.

By Corollary 1(i), with a concave ability distribution F (·), all players exert positive

efforts in equilibrium with positive probabilities. To understand the logic, consider a

simple two-player sequential-move contest (1, 1) and focus on the first mover. His future

opponent—i.e., the second mover—will either match his effort or stay inactive. The

13In the case that T0 is an empty set, we let t0 = 0.
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first mover thus ends up with an expected payoff F (b)− b/a when he exerts an effort

b, where F (b) is the probability of his defeating the second mover. A concave ability

distribution ensures that the first mover’s expected payoff is concave in his effort, which,

in turn, implies that he tends to increase his effort gradually as his ability ascends. To

put this intuitively, a concave ability distribution implies milder future competition,

since a mediocre opponent is more likely to realize in the second period, which compels

the first mover to participate actively. That is, the marginal return of sinking the first

unit of effort exceeds the associated marginal cost, i.e., F ′(0) > 1.

In contrast, with a convex ability distribution F (·), all players who arrive prior to

period T stay inactive in equilibrium regardless of their own types. Period-T players

behave as if they are participating in a simultaneous all-pay auction with nT players,

where the standard result in static all-pay auctions applies. We again resort to the

two-player sequential-move contest (1, 1) to elaborate on the intuition. Recall that

the first mover receives an expected payoff F (b) − b/a when he sinks an effort of b,

which is convex with a convex CDF F (·), and thus its maximizer is either zero or a

sufficiently large effort. Intuitively, a convex ability distribution implies intense future

competition, because high-ability players are likely to emerge in later periods. This

disincentivizes early players, since inaction allows them to avert futile investment. In

response, the players—except for those from the last period—choose to drop out of the

competition.

3.3 Discussion: Discontinuity in Equilibrium Strategies

The result of Theorem 1 can readily be adapted to derive the equilibrium in the

concave/convexity case. Further, recall that Lemma 4 alludes to the possibility of

discontinuous equilibrium bidding strategies. However, such discontinuity arises in

neither of the cases laid out above—i.e., concave or convex ability distributions. Next,

we demonstrate that discontinuity may indeed emerge under irregular distribution—

e.g., to be concave in some regions and convex in others.

Consider the following three ability distributions: (i) F1(a) = a2/3; (ii) F2(a) = a2;

and (iii)
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(a) CDF of Ability

(b) Contest (1, 1) (c) Contest (2, 1)

Figure 3: First Mover’s Bidding Strategy in Two-period Sequential-move Contests
under Different Ability Distributions.

F3(a) =


√
a, a < 1

4
,

(a+0.75)2

2
, 1

4
≤ a ≤ 1

2
,

0.3837
√
a− 0.4764 + 0.7224, a > 1

2
.

Note that F3(·) is convex in a on [1
4
, 1

2
] and concave on (0, 1

4
) and (1

2
, 1] (see Fig-

ure 3(a)). Again, consider a simple two-player sequential-move contest (n1, n2) = (1, 1).

Figure 3(b) illustrates the first mover’s equilibrium bidding strategy under each dis-

tribution. A jump in the bidding function with respect to the first mover’s ability, a,

arises under F3(·). Recall that the first-mover’s winning probability is given by F3(b)

and his expected payoff is F3(b) − b/a. The curvature of the CDF of ability captures

the magnitude of the marginal return on his effort. In the convex region of the ability

distribution, the first mover enjoys increasing marginal returns on his effort. As a

result, his bid would not fall in the region of [1
4
, 1

2
]. Moreover, as shown by Figure 3(c),

the discontinuity would persist when an additional player is added in the first period,
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which yields a simultaneous competition (n1 = 2).14

4 Discussions and Extensions

In this section, we apply our equilibrium results to further delve into the fundamen-

tals of this contest game with sequential entry and demonstrate the versatility of our

approach. First, we formally establish the monotonicity of players’ ex ante expected

payoffs with respect to their timing positions in the general setting. Second, we endo-

genize players’ moving order in the contest. Finally, we allow for a general payment

rule, such that each player may not bear the full cost of his effort.

4.1 Monotone Payoff Ranking

We now formally address the following research question: Holding fixed the contest

architecture, does a player benefit from being an earlier/later mover? Answering this

question requires that we compare players’ expected payoffs with respect to their tim-

ing positions. We establish that players’ equilibrium expected payoffs can be ranked

monotonically.

Let Π∗t denote a period-t player’s equilibrium expected payoff, with t ∈ T , in a

contest with sequential entry n ≡ (n1, . . . , nT ). Recall that T0 ≡ {t ∈ T : Qt(b) ≤
b,∀b ∈ [0, 1]} indicates the set of the periods in which players always stay inactive in

equilibrium, with t0 ≡ max T0. The following result can be obtained.

Theorem 2 (Later-mover Advantage in Contests with Sequential Entry)

Consider a contest with sequential entry n ≡ (n1, . . . , nT ). A player’s expected payoff

is higher than those of all earlier movers in the unique symmetric PBE. To put this

formally, 0 = Π∗1 = · · · = Π∗t0 < Π∗t0+1 < · · · < Π∗T .

Recall that t0 = 0 under a concave ability distribution and t0 = T − 1 under a

convex distribution. The following result can immediately be obtained.

14Note that the jump in the first mover’s bidding strategy under F3(·) is not driven by the kinks
in the CDF’s derivatives; rather it is caused by the change in the concavity/convexity of the CDF.
More formally, we can construct an example of a distribution function such that all derivatives are
differentiable on (0, 1) and a jump emerges in the equilibrium bidding function.
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Corollary 2 (Later-mover Advantage with Concave/Convex Ability Dis-

tributions) Consider a contest with sequential entry n ≡ (n1, . . . , nT ). The following

statements hold in the unique symmetric PBE:

(i) Suppose that F (·) is continuous, twice differentiable, strictly concave, and satisfies

lima↘0[f(a)a] = 0. Then 0 < Π∗1 < · · · < Π∗T .

(ii) Suppose that F (·) is continuous, twice differentiable, and weakly convex. Then

Π∗1 = · · · = Π∗T−1 = 0 < Π∗T .

Theorem 2 and Corollary 2 formally establish later-mover advantage in a multi-

player all-pay auction with sequential entry. We sketch the proof as follows. For ease of

exposition, let us consider a fully sequential contest, withN = T . Recall that the profile

of equilibrium bidding strategies is denoted by b∗ :=
{
b∗1(a; β1), . . . , b∗T (a; βT )

}
. Fix an

arbitrary period τ ∈ {t0 +1, . . . , T −1}. We conduct the following thought experiment.

Let us modify the period-(τ + 1) player’s bidding strategy from b∗τ+1(a; βτ+1) to

b†τ+1(a; βτ+1) := b∗τ (a; βτ ).

In other words, he hypothetically ignores the period-τ player’s effort and replicates the

latter’s equilibrium strategy (not his effort). Denote players’ expected payoffs under the

constructed strategy profile b† :=
{
b∗1(a; β1), . . . , b∗τ (a; βτ ), b

†
τ+1(a; βτ+1), b∗τ+2(a; βτ+2),

. . . , b∗T (a; βT )
}

by (Π†1, . . . ,Π
†
T ).

The key is to show that the period-τ player would be strictly better off with the

period-(τ+1) player’s hypothetical deviation, i.e., Π∗τ < Π†τ . The intuition is as follows.

A later mover, ceteris paribus, tends to be more aggressive in competition than an

earlier mover: The former needs to beat a smaller number of future opponents for a

win than the latter, which encourages the later mover. Thus, when the period-(τ + 1)

player deviates and replicates his immediate predecessor’s strategy, he would be less

likely to outperform the latter. This obviously benefits the period-τ player.

To fix ideas, consider a period-τ player, with ability aτ > a∗∗τ (βτ ), for a given

βτ . By Theorem 1, he would exert an effort strictly above βτ . When the period-

(τ + 1) player mimics the period-τ player, the former can defeat the latter if and

only if the period-(τ + 1) player is of a higher type, which occurs with probability

1−F (aτ ). Under the equilibrium strategy profile, in contrast, the period-(τ +1) player
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outperforms the period-τ player as long as the former chooses to stay active: He does

so whenever his ability exceeds the threshold a∗τ+1(βτ+1) = a∗τ+1(b∗τ (aτ ; βτ )), which

occurs with a probability of 1−F (a∗τ+1(b∗τ (aτ ; βτ ))). We formally show in the appendix

that aτ > a∗τ+1(b∗τ (aτ ; βτ )):
15 In other words, the period-(τ + 1) player behaves less

aggressively when he mimics his immediate predecessor.

To complete the proof, first note that Π†τ+1 ≤ Π∗τ+1 by the definition of PBE.

We further have Π†τ ≤ Π†τ+1 by the construction of b†τ+1 = b∗τ .
16 Combining these

inequalities yields Π∗τ < Π†τ ≤ Π†τ+1 ≤ Π∗τ+1, which concludes that a period-(τ + 1)

player receives a higher equilibrium payoff than a period-τ player.

Our prediction stands in sharp contrast to that of Hinnosaar (2023). He establishes

that an earlier mover exerts a higher effort and secures a larger expected payoff. We

nevertheless observe the opposite monotone payoff ranking in our setting. Hinnosaar

(2023) considers a lottery contest, in which earlier and later efforts can be strategic

substitutes near the equilibrium. In a lottery contest, one is tempted to preempt

future opponents. However, this does not occur in an all-pay auction: The later mover

is awarded an information advantage since he can observe previous efforts; the winner-

selection mechanism of an all-pay auction allows him to outbid earlier opponents by

simply matching their efforts. As a result, strategic complementarity could arise in

our bidding game, which, as we establish, discourages early bidders. Our study thus

complements that by Hinnosaar (2023).

4.2 Endogenous Timing

Our equilibrium results enable us to explore how the architecture of the contest

game could arise endogenously. Let the contest be preceded by a timing-choice stage,

in which players simultaneously commit to the timing of their moves. Each player

picks one from L ≥ 2 available periods, denoted by L := {1, . . . , L}, before he learns

his realized type and acts accordingly. Before the contest begins, the architecture ñ is

15We show in the proof of Theorem 2 that aτ > a∗τ+1(b∗τ (aτ ;βτ )) holds for an arbitrary contest
architecture.

16Note that the strict inequality may hold—i.e., Π†τ < Π†τ+1—due to the tie-breaking rule, despite
the fact that period-τ and period-(τ + 1) players employ the same strategy. To see this, consider a
fully sequential contest (1, 1, 1) with a concave ability distribution and let the third mover replicate
the second mover’s equilibrium strategy. In the event that players 2 and 3 choose to match player 1’s
effort, player 3 wins, which occurs with a positive probability and results in the strict inequality.
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announced publicly, and each player learns his own ability privately. The contest with

sequential entry takes place as described in Section 2 thereafter, and Theorem 1 fully

characterizes the unique PBE of the contest subgame.17

It is noteworthy that the later-mover advantage established in Theorem 2 does

not imply that choosing a late period is a dominant strategy for each player. To be

more specific, the later-mover advantage is obtained by comparing different players’

expected payoffs with respect to their timing positions under a predetermined con-

test architecture. With endogenous timing of moves, however, a player’s autonomous

timing choice would reshape the resultant contest architecture and affect all players’

equilibrium payoffs. Understanding a player’s timing choice requires that we com-

pare a given player’s equilibrium payoffs across different contest architectures. The

subsequent analysis takes up this challenge.

The analysis begins with players’ equilibrium winning probabilities. Fix an arbi-

trary contest architecture n ≡ (n1, . . . , nT ), with nt ≥ 1 for t ∈ {1, . . . , T}. Consider

a period-t player of ability a ∈ (0, 1) and denote by WP ∗t (a;n) his expected equilib-

rium winning probability in the unique symmetric PBE. The following lemma can be

obtained.

Lemma 5 Consider two arbitrary contest architectures n′ ≡ (n′1, . . . , n
′
T ′)—with n′t ≥

1, t ∈ {1, . . . , T ′}, T ′ ≥ 2, and
∑T ′

t=1 n
′
t = N—and n′′ ≡ (n′′1, . . . , n

′′
T ′′)—with n′′t ≥ 1,

t ∈ {1, . . . , T ′′}, T ′′ ≥ 2, and
∑T ′′

t=1 n
′′
t = N . For almost every a ∈ (0, 1), we have

max
{
WP ∗1 (a;n′),WP ∗1 (a;n′′)

}
< FN−1(a) < min

{
WP ∗T ′(a;n′),WP ∗T ′′(a;n′′)

}
.

That is, for almost every a, a player is more likely to win when acting in the last

period of the contest than being one of the first movers, regardless of the prevailing

contest architecture. The comparison is bridged through FN−1(a), which is a player’s

equilibrium winning probability in a simultaneous contest.

This inequality paves the way for a comparison of equilibrium payoffs. We invoke

the standard payoff-equivalence argument for direct mechanisms. A period-t player’s

equilibrium payoff in a contest with sequential entry n ≡ (n1, . . . , nT )—which we

17Theorem 1 is established under the assumption that each period possesses at least one player.
With endogenous timing, this assumption may not be satisfied due to the possibility that no players
choose to move in a certain period. In such a scenario, we can simply remove these periods and relabel
the rest to invoke Theorem 1.

22



denote by Π∗t (n)—can be pinned down by his equilibrium expected winning probability

as follows:

Π∗t (n) = E
[

1

a

∫ a

0

WP ∗t (x;n)dx

]
=

∫ 1

0

∫ a

0

WP ∗t (x;n)

a
dxdF (a).

We further define ΠSIM :=
∫ 1

0

∫ a
0

1
a
FN−1(a)dxdF (a), which is one’s expected payoff

in a simultaneous contest. Lemma 5 can then be translated into a comparison of

equilibrium payoffs:

max
{

Π∗1(n′),Π∗1(n′′)
}
< ΠSIM < min

{
Π∗T ′(n

′),Π∗T ′′(n
′′)
}
. (9)

By this inequality, we are ready to explore players’ incentives in their timing choices.

The following result ensues.

Lemma 6 (Strictly Dominated Strategy with Endogenous Moving Order)

For every player, choosing to move in period 1 is strictly dominated by choosing to

move in period L.

Lemma 6 implies that the equilibrium in the timing-choice stage is solvable by

iterated elimination of strictly dominated strategies (IESDS).

Theorem 3 (Unique Equilibrium with Endogenous Moving Order) All play-

ers’ choosing to move in the last period constitutes a Nash equilibrium of the first-stage

game that uniquely survives IESDS.

When players are allowed to pick the timing of their moves, all players will choose

the last period and a simultaneous contest endogenously emerges. Zhang (2023) applies

the mechanism design approach to optimal contest design with convex (or linear) effort

cost and identifies a sufficient and necessary condition for the static single-prize contest

to be effort maximizing. With linear effort cost, the condition degenerates to Myerson’s

(1981) classical regularity condition of nondecreasing virtual value—i.e., with a− [1−
F (a)]/f(a) being nondecreasing in a in our context. Our Theorem 3, together with

Zhang (2023), indicates that a process of decentralized decision on timings of moves

leads to a simultaneous contest and generates the maximum amount of expected total

effort under the regularity condition.
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4.3 Hybrid Payment Rule for Losers

Our main results do not rely on the all-pay feature. Specifically, we allow each loser

to bear only a portion of his effort cost. The associated payment rule is specified as

follows: The winner in the contest is obliged to pay the full cost of his own effort, while

a loser pays θ ∈ [0, 1] of that.18,19 To put this formally, fixing a contestant i’s ability

ai and the effort profile b ≡ (b1, . . . , bN), his ex post payoff is

pi(b)(1− bi/ai)− [1− pi(b)]θbi/ai, for all i ∈ N .

The above expression degenerates to (2) in the baseline setting as θ = 1, and the contest

game turns into a first-price auction with sequential entry as θ = 0.20 A θ ∈ (0, 1)

depicts a hybrid payment rule that involves both winner-pay and all-pay elements.

Fixing a contest architecture n ≡ (n1, . . . , nT ) and θ ∈ [0, 1], a sequence of func-

tions {Qt(b; θ), a
∗
t (β; θ), π̃t(b, a; θ)}Tt=1 in parallel with (3), (4), and (5) can be defined

recursively as follows:21

QT (b; θ) ≡ 1, Qt−1(b; θ) := Qt(b; θ)F
nt
(
a∗t (b; θ)

)
,∀b ∈ [0, 1], (10)

a∗t (β; θ) := max{0 < a ≤ 1 : π̃t(b, a; θ) ≤ 0,∀b ≥ β}, (11)

π̃t(b, a; θ) := Qt(b; θ)F
nt−1(a)

[
1− (1− θ)b/a

]
− θb/a. (12)

With slight abuse of notation, let T0(θ) := {t ∈ T : Qt(b; θ) ≤ θb
1−b+θb ,∀b ∈ [0, 1]}

and define t0(θ) := max T0(θ). Again, we can obtain 0 ≤ t0(θ) ≤ T − 1.

Theorem 4 (Contests with a Generalized Payment Rule for Losers) Fix

θ ∈ [0, 1] and consider a generalized contest with sequential entry n ≡ (n1, . . . , nT )

under a tie-breaking rule as specified in (1). There exists a unique symmetric PBE

of the contest game. In the equilibrium, all players in periods 1 through t0(θ) choose

18See Amann and Leininger (1996) and Baye, Kovenock, and De Vries (2005, 2012) for similar
parameterization.

19Note that a bid b ∈ (0, βt) always leads to a loss and is suboptimal to a period-t player for θ > 0.
In contrast, when θ = 0, bidding b ∈ (0, βt) is strategically equivalent to bidding zero because a bid
does not incur a cost to a loser. In this case, we impose the restriction that period-t players bid 0 or
weakly above βt without any loss of generality when characterizing the symmetric PBE.

20To the best of our knowledge, the previous studies of first-price auctions have yet to accommodate
a setting of unrestricted timing structure like ours.

21We add θ to {Qt(b), a∗t (β), π̃t(b, a)}Tt=1 to highlight the fact that the defined sequence of functions
depends on θ.
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to stay inactive regardless of their ability and the previous maximum bid; moreover,

a player’s expected payoff is higher than those of all earlier movers. If players can

choose the timing of their move, then all players’ choosing to move in the last period

constitutes a Nash equilibrium of the first-stage game that uniquely survives IESDS.

Theorem 4 reinstates the main results of our baseline model under the hybrid

payment rule. Our analysis and predictions extend to all the alternative settings with

θ ∈ [0, 1], such as standard first-price auctions. The main results are not an artifact of

the all-pay feature. Instead, the strategic complementarity in these bidding games is

the key driver of the results.

5 Concluding Remarks

In this paper, we conduct a general analysis of an incomplete-information contest

with sequential entry in the form of (first-price) all-pay auctions. Our model allows for a

flexible architecture, such that multiple players can be clustered in a single period: They

move simultaneously within the period, while observing earlier efforts and anticipating

future competitions. Our analysis fully characterizes the unique symmetric equilibrium

under a general ability distribution, which adds to the contest literature since a general

analysis of contests with sequential entry remains scarce.

Based on our equilibrium analysis, we formally establish a later-mover advantage,

in that one secures a higher ex ante expected payoff when he is assigned to a later

timing position vis-à-vis an earlier one, despite the fact that players’ ex ante expected

efforts can be nonmonotone. We further allow players to choose the timing of their

moves in a pre-contest stage. The unique equilibrium that survives iterated elimination

of strictly dominated strategies requires that all players choose the last period. Finally,

we demonstrate that the all-pay feature is not crucial for our analysis and that all of

the results extend to contests with a hybrid payment rule for losers.

Large room for extensions remains. For instance, a model of multiple prizes with

sequential moves deserves serious scholarly effort. A second-price all-pay auction (e.g.,

Krishna and Morgan, 1997; Bulow and Klemperer, 1999; Hafer, 2006; Bergemann,

Brooks, and Morris, 2019) also deserves serious research effort under a sequential timing

architecture, and will be attempted in the future. Further, our analysis assumes ex
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ante symmetric players. This allows us to identify the effect of timing positions on

players’ expected payoff. An equilibrium analysis of contests with sequential entry

and ex ante heterogeneous players under a general timing architecture is technically

challenging, but warrants serious research effort. Also, our paper assumes that each

player commits to his effort upon entry. One natural variation is to allow them to

add to their bids in future periods, as in Yildirim (2005).22 Such an analysis entails

enormous complications in our setting: With incomplete information, players’ bidding

strategies trigger complicated information updating and give rise to a challenging and

subtle signaling game. Finally, we assume that players’ timings of moves are well

known before they sink their effort. It is intriguing to assume instead that players’

timing positions are randomly assigned, so they do not know precisely the timings of

future opponents’ entries while observing the history of previous bids. This setting

also causes technical difficulty: The general and random timing architecture can lead

to numerous possibilities for future competitions—which is history-dependent—and, in

turn, complexly and reflexively reshape earlier bidding.

References

Amann, E., and W. Leininger (1996): “Asymmetric all-pay auctions with incom-
plete information: The two-player case,” Games and Economic Behavior, 14(1),
1–18.

Amir, R. (1995): “Endogenous timing in two-player games: a counterexample,”
Games and Economic Behavior, 9(2), 234–237.

Amir, R., and I. Grilo (1999): “Stackelberg versus Cournot equilibrium,” Games
and Economic Behavior, 26(1), 1–21.

Amir, R., and A. Stepanova (2006): “Second-mover advantage and price leadership
in Bertrand duopoly,” Games and Economic Behavior, 55(1), 1–20.

Andreoni, J., Y.-K. Che, and J. Kim (2007): “Asymmetric information about
rivals’ types in standard auctions: An experiment,” Games and Economic Behavior,
59(2), 240–259.

22Relatedly, Quint and Hendricks (2018) let a seller use indicative bids—i.e., nonbinding preliminary
bids—before a standard English auction to select a subset of bidders for conducting due diligence and
eliciting binding offers. In their model, bidders simultaneously send cheap-talk messages to the seller,
who subsequently uses these messages to select participants for the auction. The chosen bidders then
partake in the auction.

26



Baik, K. H., and J. F. Shogren (1992): “Strategic behavior in contests: Com-
ment,” American Economic Review, 82(1), 359–362.

Baye, M. R., D. Kovenock, and C. G. De Vries (1993): “Rigging the lobbying
process: An application of the all-pay auction,” American Economic Review, 83(1),
289–294.

(2005): “Comparative analysis of litigation systems: An auction-theoretic
approach,” Economic Journal, 115(505), 583–601.

(2012): “Contests with rank-order spillovers,” Economic Theory, 51, 315–350.

Bergemann, D., B. Brooks, and S. Morris (2019): “Revenue guarantee equiva-
lence,” American Economic Review, 109(5), 1911–29.

Brown, J. (2011): “Quitters never win: The (adverse) incentive effects of competing
with superstars,” Journal of Political Economy, 119(5), 982–1013.

Brown, J., and D. B. Minor (2014): “Selecting the best? Spillover and shadows
in elimination tournaments,” Management Science, 60(12), 3087–3102.

Bulow, J., and P. Klemperer (1999): “The generalized war of attrition,” American
Economic Review, 89(1), 175–189.

Che, Y.-K., and I. L. Gale (1998): “Caps on political lobbying,” American Eco-
nomic Review, 88(3), 643–651.

(2003): “Optimal design of research contests,” American Economic Review,
93(3), 646–671.

Daughety, A. F. (1990): “Beneficial concentration,” American Economic Review,
80(5), 1231–1237.

Deneckere, R. J., and D. Kovenock (1992): “Price leadership,” Review of Eco-
nomic Studies, 59(1), 143–162.

Dixit, A. (1987): “Strategic behavior in contests,” American Economic Review, 77(5),
891–898.

Dowrick, S. (1986): “von Stackelberg and Cournot duopoly: Choosing roles,” RAND
Journal of Economics, 17(2), 251–260.

Fullerton, R. L., and R. P. McAfee (1999): “Auctioning entry into tourna-
ments,” Journal of Political Economy, 107(3), 573–605.

Gal-Or, E. (1985): “First mover and second mover advantages,” International Eco-
nomic Review, 26(3), 649–653.

27



(1987): “First mover disadvantages with private information,” Review of
Economic Studies, 54(2), 279–292.

Glazer, A., and R. Hassin (2000): “Sequential rent seeking,” Public Choice, 102(3-
4), 219–228.

Green, J. R., and N. L. Stokey (1983): “A comparison of tournaments and con-
tracts,” Journal of Political Economy, 91(3), 349–364.

Hafer, C. (2006): “On the origins of property rights: Conflict and production in the
state of nature,” Review of Economic Studies, 73(1), 119–143.

Hamilton, J. H., and S. M. Slutsky (1990): “Endogenous timing in duopoly
games: Stackelberg or Cournot equilibria,” Games and Economic Behavior, 2(1),
29–46.

Hinnosaar, T. (2023): “Optimal sequential contests,” Theoretical Economics, forth-
coming.

Hoffmann, M., and G. Rota-Graziosi (2012): “Endogenous timing in general
rent-seeking and conflict models,” Games and Economic Behavior, 75(1), 168–184.

Jian, L., Z. Li, and T. X. Liu (2017): “Simultaneous versus sequential all-pay
auctions: An experimental study,” Experimental Economics, 20(3), 648–669.

Kahana, N., and D. Klunover (2018): “Sequential lottery contests with multiple
participants,” Economics Letters, 163, 126–129.

Kempf, H., and G. Rota-Graziosi (2010): “Endogenizing leadership in tax com-
petition,” Journal of Public Economics, 94(9-10), 768–776.

Konrad, K. A., and W. Leininger (2007): “The generalized Stackelberg equilib-
rium of the all-pay auction with complete information,” Review of Economic Design,
11(2), 165–174.

Krishna, V., and J. Morgan (1997): “An analysis of the war of attrition and the
all-pay auction,” Journal of Economic Theory, 72(2), 343–362.

La Rosa, F., and G. Liberatore (2014): “Biopharmaceutical and chemical firms’
R&D disclosure, and cost of equity: The impact of the regulatory regime,” European
Management Journal, 32(5), 806–820.

Lazear, E. P., and S. Rosen (1981): “Rank-order tournaments as optimum labor
contracts,” Journal of Political Economy, 89(5), 841–864.

Lee, T., and L. L. Wilde (1980): “Market structure and innovation: A reformula-
tion,” Quarterly Journal of Economics, 94(2), 429–436.

28



Leininger, W. (1993): “More efficient rent-seeking: A Münchhausen solution,” Pub-
lic Choice, 75(1), 43–62.

Liu, T. X., J. Yang, L. A. Adamic, and Y. Chen (2014): “Crowdsourcing with
all-pay auctions: A field experiment on taskcn,” Management Science, 60(8), 2020–
2037.

Loury, G. C. (1979): “Market structure and innovation,” Quarterly Journal of Eco-
nomics, 93(3), 395–410.

Mailath, G. J. (1993): “Endogenous sequencing of firm decisions,” Journal of Eco-
nomic Theory, 59(1), 169–182.

Maskin, E., and J. Riley (2000): “Equilibrium in sealed high bid auctions,” Review
of Economic Studies, 67(3), 439–454.

Moldovanu, B., and A. Sela (2001): “The optimal allocation of prizes in contests,”
American Economic Review, 91(3), 542–558.

(2006): “Contest architecture,” Journal of Economic Theory, 126(1), 70–96.

Moldovanu, B., A. Sela, and X. Shi (2007): “Contests for status,” Journal of
Political Economy, 115(2), 338–363.

Morgan, J. (2003): “Sequential contests,” Public Choice, 116(1-2), 1–18.
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Appendix A Proofs

A.1 Proof of Lemma 1

Proof. We prove Lemma 1 along with the following lemma:

Lemma 7 (Equilibrium Winning Probability of a Provisional Winner) Con-

sider a contest with sequential entry n ≡ (n1, . . . , nT ) and suppose that a symmetric

PBE exists. Let b ≥ 0 be the realized highest effort by the end of period t ∈ T . Then

Qt(b) gives the probability of effort b’s exceeding all subsequent efforts in equilibrium.

It is useful to prove several intermediate results.

Lemma 8 The following statements hold:

(i) a∗t (β) is continuous, piecewise differentiable, and weakly increasing on [0, 1], sat-

isfying a∗t (β) ≥ β for all t ∈ T ; and

(ii) Qt(b) is continuous, piecewise differentiable, and strictly increasing on [0, 1], with

Qt(0) = 0 and Qt(1) = 1 for all t ∈ T \ {T}.

Proof. We prove the lemma by induction. Note that piecewise analyticity implies

piecewise differentiability. Therefore, to show that a∗t (β) and Qt(b) are piecewise dif-

ferentiable, it suffices to show that they are piecewise analytic. Denote by Gn(·) the

inverse function of aF n−1(a) for an arbitrary positive integer n ∈ N+. It can be ver-

ified that Gn(·) is strictly increasing, piecewise analytic, and differentiable on [0, 1],

with Gn(0) = 0 and Gn(1) = 1.

Base case: By definition, QT (b) = 1. Therefore, π̃T (b, a) ≡ QT (b)F nT−1(a)− b/a =

F nT−1(a)− b/a. These facts, together with (4), imply that

a∗T (β) := max
{

0 < a ≤ 1 : π̃T (b, a) ≤ 0,∀b ∈ [β, 1]
}

= GnT (β)

and QT−1(b) = F nT
(
GnT (b)

)
. It is straightforward to verify that a∗T (β) satisfies part

(i) of the lemma and QT−1(b) satisfies part (ii).
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Inductive step: Suppose thatQt(b) satisfies part (ii) of the lemma for some t ≤ T−1.

It suffices to show that a∗t (β) satisfies part (i) of the lemma and Qt−1(b) satisfies part

(ii).

Fixing b ∈ (0, 1], π̃t(b, a) strictly increases with a ∈ (0, 1). Define ăt(b) as follows:

ăt(b) :=


Gnt

(
min

{
1

Q′t(0)
, 1
})

, if b = 0,

1, if b ∈ (0, 1] and π̃t(b, 1) < 0,

the unique solution to π̃t(b, a) = 0, otherwise.

It can be verified that a∗t (β) = minb≥β ăt(b) and ăt(b) is continuous on [0, 1]. This

in turn implies that a∗t (β) is continuous, piecewise analytic, and weakly increasing on

[0, 1]. Further, for b ≥ β, we have

π̃t(b, β) = F nt−1(β)Qt(b)− b/β ≤ 0,

which indicates that β ∈ {0 < a ≤ 1 : π̃t(b, a) ≤ 0,∀b ≥ β} and thus a∗t (β) ≥ β. To

summarize, a∗t (β) satisfies part (i) of the lemma.

Because Qt(b) satisfies part (ii) of the lemma by assumption and a∗t (β) satisfies part

(i), we can conclude that Qt−1(b) = Qt(b)F
nt
(
a∗t (b)

)
satisfies part (ii). This completes

the inductive step.

Conclusion: By the principle of induction, a∗t (β) satisfies part (i) of Lemma 8 for

all t ∈ T and Qt(b) satisfies part (ii) for all t ∈ T \ {T}. This concludes the proof.

Lemma 9 The following statements hold for all t ∈ T .

(i) If a∗t (β) < a < 1, then there exists b ∈ [β, 1] such that π̃t(b, a) > 0.

(ii) If 0 < a < a∗t (β), then π̃t(b, a) < 0 for all b ∈ [β, 1] \ {0}.

Proof. Part (i) of the lemma is obvious and it remains to prove part (ii). Fix 0 <

a < a∗t (β). Suppose, to the contrary, that π̃t(b0, a) ≥ 0 for some b0 ∈ [β, 1] \ {0}. It

follows immediately that a ≥ b0. Further, we have that π̃t(b0, a
∗
t (β)) > π̃t(b0, a) ≥ 0,

which contradicts with the fact that π̃t(b0, a
∗
t (β)) ≤ 0 for all b ∈ [β, 1]. This completes

the proof.

Now we can prove Lemmas 1 and 7 by induction.
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Base case: Consider the last period, i.e., t = T . It is evident that the realized

highest effort by the end of period T wins the contest with certainty. By definition,

QT (b) = 1. Therefore, Lemma 7 holds for t = T and it remains to show that Lemma 1

holds for the last period. We consider the following two cases:

(a) Suppose nT = 1. Then the optimal bidding strategy of the unique period-T

player is to bid βT if a > βT and bid 0 otherwise. Therefore, Lemma 1(i) and (ii)

hold.

(b) Suppose nT ≥ 2. We first show that b∗T (a; βT ) is increasing in a. Suppose, to the

contrary, that there exists an ability pair (a′, a′′), with 0 < a′ < a′′ < 1, such that

b′′ := b∗T (a′′; βT ) < b′ := b∗T (a′; βT ). Denote the equilibrium winning probability

of bidding b by WP∗T (b). It is obvious that WP∗T (b′′) < WP∗T (b′); otherwise, a

type-a′ player has a strict incentive to bid b′′. Moreover, from players’ incentive

compatibility constraints, we have that

WP∗T (b′)a′ − b′ ≥ WP∗T (b′′)a′ − b′′, and WP∗T (b′′)a′′ − b′′ ≥ WP∗T (b′)a′′ − b′,

which is equivalent to

a′
[
WP∗T (b′)−WP∗T (b′′)

]
≥ b′ − b′′, and a′′

[
WP∗T (b′)−WP∗T (b′′)

]
≤ b′ − b′′.

Combining the above inequalities yields

(a′ − a′′)×
[
WP∗T (b′)−WP∗T (b′′)

]
≥ 0,

which is a contradiction given that WP∗T (b′′) < WP∗T (b′) and the postulated

a′ < a′′.

Let āT := inf{a : b∗T (a; βT ) > 0}. We first show that b∗T (a; βT ) strictly increases

with a for a > āT . Suppose, to the contrary, that āT < a′ < a′′ < 1 and

b′ := b∗T (a′; βT ) = b′′ := b∗T (a′′; βT ). It follows immediately that b∗T (a; βT ) = b′

for a ∈ [a′, a′′]. Then a type-a′ player has an incentive to deviate from bidding

b′. Specifically, he can raise his effort by an infinitesimal amount to substantially

increase his winning probability, which leads to an increase in his interim expected

payoff. A contradiction.

33



Further, note that b∗T (a; βT ) ≥ βT for a > āT and b∗T (a; βT ) = 0 for a ≤ āT , and it

thus remains to prove that āT = a∗T (βT ) ≡ max
{

0 < a ≤ 1 : π̃T (b, a) ≤ 0,∀b ∈ [βT , 1]
}

,

where π̃T (b, a) ≡ QT (b)F nT−1(a)− b/a. We consider the following two cases:

(i) Suppose that āT < a∗T (βT ). Consider a type-a′ player, with āT < a′ <

a∗T (βT ). Recall that b∗T (a; βT ) strictly increases with a for a > āT . Therefore,

we have b∗T (a′; βT ) > 0. His equilibrium expected payoff is

F nT−1(a′)− b∗T (a′; βT )

a′
= π̃T

(
b∗T (a′; βT ), a′

)
< 0,

where the strict inequality follows from b∗T (a′; βT ) 6= 0, b∗T (a′; βT ) ≥ βT ,

and Lemma 9(ii). However, he can secure a nonnegative expected payoff by

bidding zero. A contradiction.

(ii) Suppose that āT > a∗T (βT ). Fix a′ ∈
(
a∗T (βT ), āT

)
. It follows immediately

from a′ < āT that b∗T (a′; βT ) = 0. Note that bidding zero must generate

zero expected payoff to a type-a′ player. Otherwise, we must have βT =

0; together with āT > 0, we can conclude that a player whose type falls

below āT can strictly increase his expected payoff by exerting an infinitesimal

amount of effort. A contradiction.

By Lemma 9(i), there exists some b′ ∈ [βT , 1] such that π̃T (b′, a′) > 0. Then

type-a′ player’s expected payoff of bidding b′ is bounded from below by

F nT−1(a′)− b′

a′
= π̃T (b′, a′) > 0.

Therefore, a type-a′ player has a strict incentive to deviate from exerting

zero effort, which is a contradiction.

Inductive step: Suppose that the equilibrium bidding strategy b∗t (a; βt) satisfies the

properties stated in Lemma 1 and Qt(b) gives the probability of the effort b’s exceeding

all subsequent efforts in equilibrium, as predicted in Lemma 7, for some t ≤ T . We

show that the same holds for period t− 1.

Suppose that the realized highest effort by the end of period t−1 is b. Then the prob-

ability of the effort b’s exceeding all subsequent efforts in equilibrium isQt(b)F
nt
(
a∗t (b)

)
,

which is exactly Qt−1(b) from (3).
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For the case of nt−1 = 1, note that the problem of the only period-(t − 1) player

with ability a is maxb∈{0}∪[βt−1,1][Qt−1(b)−b/a]. It is then straightforward to verify that

(i) b∗t−1(a; βt−1) is increasing in a on (0, 1); and (ii) b∗t−1(a; βt−1) = 0 for a ≤ a∗t−1(βt−1)

and b∗t−1(a; βt−1) ≥ βt−1 for a > a∗t−1(βt−1). For the case of nt−1 ≥ 2, by the same

argument as in the base case, we can show that b∗t−1(a, βt−1) satisfies all properties

stated in Lemma 1. This completes the inductive step.

Conclusion: By the principle of induction, b∗t (a; βt) satisfies all properties stated in

Lemma 1 for all t ∈ T . Moreover, Qt(b) gives the probability of the effort b’s exceeding

all subsequent efforts in equilibrium for all t ∈ T , as predicted in Lemma 7. This

concludes the proof.

A.2 Proof of Lemma 2

Proof. See main text.

A.3 Proof of Lemma 3

Proof. It is useful to prove the following intermediate result.

Lemma 10 Suppose that a∗t (βt) < 1. Then π̃t
(
s1
t (a
∗
t (βt); βt), a

∗
t (βt)

)
= 0.

Proof. Evidently, s1
t (a
∗
t (βt); βt) ≥ βt; together with the definition of a∗t (βt), we can ob-

tain π̃t
(
s1
t (a
∗
t (βt); βt), a

∗
t (βt)

)
≤ 0. Suppose, to the contrary, that π̃t

(
s1
t (a
∗
t (βt); βt), a

∗
t (βt)

)
6=

0. Then we must have

π̃t
(
s1
t (a
∗
t (βt); βt), a

∗
t (βt)

)
< 0.

The above inequality, together with the fact that s1
t

(
a∗t (βt); βt

)
∈ St(a; βt), implies that

π̃t
(
b′, a∗t (βt)

)
< π̃t

(
s1
t (a
∗
t (βt); βt), a

∗
t (βt)

)
< 0, for all s1

t

(
a∗t (βt); βt

)
< b′ ≤ 1. (13)

Next, note that by definition, s1
t

(
a∗t (βt); βt

)
is the smallest element in the set St(a; βt).

Therefore, we have that

π̃t
(
b′, a∗t (βt)

)
≤ π̃t

(
s1
t (a
∗
t (βt); βt), a

∗
t (βt)

)
< 0, for all βt ≤ b′ ≤ s1

t

(
a∗t (βt); βt

)
. (14)
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Combining (13) and (14), π̃t(b
′, a∗t (βt) + ε) < 0 for all b′ ∈ [βt, 1] for sufficiently small

ε > 0, which contradicts the definition of a∗t (βt) and concludes the proof.

Now we can prove Lemma 3. Suppose, to the contrary, that nt ≥ 2, a∗t (βt) < 1,

and lima↘a∗t (βt) b
∗
t (a; βt) 6= s1

t (a
∗
t (βt); βt). We consider the following two cases:

(a) Suppose that lima↘a∗t (βt) b
∗
t (a; βt) < s1

t (a
∗
t (βt); βt). Then for sufficiently small

ε > 0, we have b∗t (a; βt) < s1
t

(
a∗t (βt); βt

)
for all a < a∗t (βt) + ε. Consider a

type-a∗t (βt) player. His expected payoff of bidding s1
t

(
a∗t (βt); βt

)
is at least

Qt

(
s1
t (a
∗
t

(
βt); βt

))
F nt−1

(
a∗t (βt) + ε

)
− s1

t (a
∗
t (βt); βt)

a∗t (βt)

>Qt

(
s1
t (a
∗
t

(
βt); βt

))
F nt−1

(
a∗t (βt)

)
− s1

t (a
∗
t (βt); βt)

a∗t (βt)

=π̃t

(
s1
t

(
a∗t (βt); βt

)
, a∗t (βt)

)
= 0,

where the equality follows from Lemma 10. Meanwhile, it follows from Lemma 1(ii)

that a type-a∗t (βt) player would bid 0 and thus earns zero expected payoff in equi-

librium. A contradiction.

(b) Suppose that lima↘a∗t (βt) b
∗
t (a; βt) > s1

t (a
∗
t (βt); βt). Consider a player whose type

is a′ = a∗t (βt) + ε for sufficiently small ε > 0. His expected payoff of bidding

b′ = b∗t (a
′; βt) is π̃t(b

′, a′). It follows from the postulated lima↘a∗t (βt) b
∗
t (a; βt) >

s1
t (a
∗
t (βt); βt) and the definition of St(a; βt) that

π̃t

(
lima↘a∗t (βt) b

∗
t (a; βt), a

∗
t (βt)

)
< π̃t

(
s1
t

(
a∗t (βt); βt

)
, a∗t (βt)

)
= 0,

where the equality again follows from Lemma 10. By continuity, π̃t(b
′, a′) < 0 for

sufficiently small ε > 0. Therefore, a type-a′ player can secure a strictly higher

expected payoff by exerting zero effort, which is a contradiction. This concludes

the proof.
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A.4 Proof of Lemma 4

Proof. Fix some type ã ∈ (a∗t (βt), 1] such that b∗t (ã − 0; βt) = emt (ã; βt) for some

1 ≤ m ≤ mt(ã; βt)− 1. Then we have that (see Figure 1)

π̃t
(
emt (ã; βt), ã

)
= π̃t

(
sm+1
t (ã; βt), ã

)
. (15)

Suppose, to the contrary, that b∗t (ã + 0; βt) 6= sm+1
t (ã; βt). We consider the following

two cases:

(a) Suppose that b∗t (ã + 0; βt) < sm+1
t (ã; βt). Then there exists ε > 0 such that

b∗t (a; βt) < sm+1
t (ã; βt) for all a < ã+ ε. Consider a player whose ability is ã− ε′

for sufficiently small ε′ > 0. His expected payoff of bidding sm+1
t (ã; βt) is no less

than

F nt−1(ã+ ε)Qt

(
sm+1
t (ã; βt)

)
− sm+1

t (ã; βt)

ã− ε′
>F nt−1(ã+ ε)Qt

(
sm+1
t (ã; βt)

)
− sm+1

t (ã; βt)

ã

>π̃t
(
sm+1
t (ã; βt), ã

)
=π̃t

(
emt (ã; βt), ã

)
,

where the second equality follows from (15). Note that b∗t (ã − 0; βt) = emt (ã; βt)

and thus π̃t(e
m
t (ã; βt), ã) is the limit of player’s equilibrium expected payoff as ε′

approaches 0. Therefore, the player can obtain a strictly higher payoff by bidding

sm+1
t (ã; βt), which is a contradiction.

(b) Suppose that b∗t (ã + 0; βt) > sm+1
t (ã; βt). Consider a player whose type is ã + ε′

for sufficiently small ε′ > 0. Note that his equilibrium expected payoff of bidding

b∗t (ã+ ε′; βt) can then be bounded from above by

π̃t
(
b∗t (ã+ ε′; βt), ã+ ε′

)
< π̃t

(
sm+1
t (ã; βt), ã

)
= π̃t

(
emt (ã; βt), ã

)
,

where the inequality follows from the definition of St(a; βt) and the equality from

(15). Meanwhile, his expected payoff of bidding b∗t (ã− 0; βt) is

F nt−1(ã)Qt

(
emt (ã; βt)

)
− emt (ã; βt)

ã+ ε′
≥ π̃t

(
emt (ã; βt), ã

)
.
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Therefore, the player has a strict incentive to deviate from his equilibrium bid

b∗t (ã+ ε′; βt), which is a contradiction.

A.5 Proof of Theorem 1

Proof. We consider the following two cases:

(a) Suppose nt = 1. It is evident that b∗t (a; βt) = 0 for a ≤ a∗t (βt) and b∗t (a; βt) solves

max
b≥βt

[
Qt(b)− b/a

]
for a > a∗t (βt). Further, let a∗∗t (βt) := supa∗t (βt)≤a≤1

{
a : Qt(βt)− βt/a > Qt(b

′)−
b′/a,∀b′ ∈ (βt, 1]

}
. It follows immediately that

b′ − βt
a

>
b′ − βt
a∗∗t (βt)

≥ Qt(b
′)−Qt(βt), for all a∗t (βt) ≤ a < a∗∗t (βt) and b′ ∈ (βt, 1],

which in turn implies that b∗t (a; βt) = βt for when the player’s ability a lies

between a∗(βt) and a∗∗(βt). To summarize, period-t player’s equilibrium bidding

strategy for the case of nt = 1 is characterized by (7) in part (i) of the theorem.

(b) Suppose that nt ≥ 2. For a ≤ a∗t (βt), it follows immediately from Lemma 1(ii)

that b∗t (a; βt) = 0. For a > a∗t (βt), we have that

b∗t (a; βt) ∈ arg max
b>βt

[
Qt(b)F

nt−1
(
(b∗t )

−1(b; βt)
)
− b/a

]
.

This implies that

a ∈ arg max
ǎ>a∗t (βt)

π̌t(ǎ, a; βt) := Qt

(
b∗t (ǎ; βt)

)
F nt−1(ǎ)− b∗t (ǎ; βt)/a.

Suppose that b∗t (a; βt) is continuous in some interval Uã = (ã, ã + ε). In the

equilibrium, the following first-order condition should be satisfied:

∂π̌t(ǎ, a; βt)

∂ǎ

∣∣∣∣
ǎ=a

= 0, for a ∈ Uã,
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which is equivalent to

(nt − 1)Qt

(
b∗t (a; βt)

)
F nt−2(a)f(a) + (b∗t )

′(a; βt)×
∂π̃t(b, a)

∂b

∣∣∣∣
b=b∗t (a;βt)

= 0, for a ∈ Uã,

(16)

and can be further simplified as (8) in the text. Condition (16), together with

Lemma 1(ii), Lemma 3, and Lemma 4, indicates that the equilibrium bidding

strategy b∗t (a; βt), if a PBE exists, is fully characterized as in Theorem 1(ii).

It remains to verify that b∗t (a; βt) as described in Theorem 1(ii) indeed consti-

tutes a PBE of the contest game. We first verify the monotonicity of b∗t (a; βt).

Evidently, the first term on the left-hand side of (16) always remains positive, in-

dicating that (b∗t )
′(a; βt) 6= 0. Moreover, suppose that there exists ã ≥ a∗t (βt) such

that b∗t (ã+ 0; βt) = smt (ã; βt) for some 1 ≤ m ≤ mt(ã; βt). From the definition of

smt (ã; βt), for any sufficiently small ε > 0, we have that

∂π̃t (b, ã)

∂b

∣∣∣∣
b=smt (ã;βt)+ε

< 0.

Therefore, (b∗t )
′(a; βt) > 0 at a = ã + ε; otherwise, (16) cannot be satisfied.

We can thus conclude from these facts that b∗t (a; βt) strictly increases with a

whenever b∗t (a; βt) is continuous and is governed by (16). It remains to verify

the monotonicity of b∗t (a; βt) at discontinuity points. Suppose that there exists ã

such that b∗t (ã− 0; βt) = emt (ã; βt) for some 1 ≤ m ≤ mt(ã; βt)− 1. By Lemma 4,

we have b∗t (ã− 0; βt) = emt (ã; βt) < sm+1
t (ã; βt) = b∗t (ã+ 0; βt).

Simple algebra would verify that

∂2π̌t(ǎ, a; βt)

∂ǎ∂a
> 0,

which implies that ∂π̌t(ǎ,a;βt)
∂ǎ

is increasing in a. Therefore, we have

∂π̌t(ǎ, a; βt)

∂ǎ
>
∂π̌t(ǎ, a; βt)

∂ǎ

∣∣∣∣
ǎ=a

= 0, for ǎ < a,
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and
∂π̌t(ǎ, a; βt)

∂ǎ
<
∂π̌t(ǎ, a; βt)

∂ǎ

∣∣∣∣
ǎ=a

= 0, for ǎ > a.

That is, the necessary first-order condition ∂π̌t(ǎ,a;βt)
∂ǎ

∣∣
ǎ=a

= 0 is also a sufficient

condition for global maximizer. This concludes the proof.

A.6 Proof of Proposition 1

Proof. See main text.

A.7 Proof of Corollary 1

Proof. It is useful to prove the following intermediate result.

Lemma 11 Suppose that F (·) is continuous, twice differentiable, strictly concave, and

satisfies lima↘0[f(a)a] = 0. Then Qt(b) is continuous, twice differentiable, weakly

increasing, strictly concave on [0, 1], and satisfies limb↘0[bqt(b)] = 0 for all t ≤ T − 1.

Proof. We prove the lemma by induction.

Base case: Consider the penultimate period, i.e., t = T − 1. Recall from the proof

of Lemma 8 that Gn(·) is defined as the inverse function of aF n−1(a) for an arbitrary

positive integer n ∈ N+. It follows from (4) and (5) that a∗T (β) = GnT (β); together

with (3), we have QT−1(b) = F nT
(
GnT (b)

)
. Evidently, QT−1(b) is continuous, twice

differentiable, and weakly increasing, and it remains to show that QT−1(b) is strictly

concave on [0, 1] and satisfies limb↘0[bqT−1(b)] = 0.

For notational convenience, define Ĝt(b) := F nt
(
Gnt(b)

)
, ∀t ∈ {2, . . . , T}. It can

be verified that Ĝt(b) is continuous, twice differentiable, and weakly increasing. We

first show that Ĝt(b) is strictly concave. Carrying out the algebra, we have that

Ĝ′t(b) =
ntF

(
Gnt(b)

)
f
(
Gnt(b)

)
F
(
Gnt(b)

)
+ (nt − 1)Gnt(b)f

(
Gnt(b)

) .
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Because Gnt(b) is strictly increasing in b, it suffices to show that for all x ∈ (0, 1),

d

dx

F (x)f(x)

F (x) + (nt − 1)xf(x)
< 0 ⇐⇒ d

dx

[
1

f(x)
+ (nt − 1)

x

F (x)

]
> 0.

The strict concavity of F (x) implies that both 1
f(x)

and x
F (x)

are strictly increasing in

x. Therefore, Ĝt(b) is strictly concave in b.

Next, we show that limb↘0[bĜ′t(b)] = 0. The analysis is straightforward for nt = 1,

and it suffices to consider the case of nt ≥ 2. Carrying out the algebra, we have that

lim
b↘0

b

Gnt(b)
= lim

b↘0

[
F nt−1

(
Gnt(b)

)]
= 0,

and

lim
b↘0

[
Gnt(b)Ĝ

′
t(b)
]

= lim
b↘0

ntbF (b)f(b)

F (b) + (nt − 1)bf(b)
= lim

b↘0

nt
1

bf(b)
+ (nt − 1) 1

F (b)

= 0.

Therefore,

lim
b↘0

[bĜ′t(b)] = lim
b↘0

b

Gnt(b)
× lim

b↘0
[Gnt(b)Ĝ

′
t(b)] = 0.

Note that QT−1(b) = ĜT (b). The above analyses indicate that QT−1(b) = ĜT (b) is

strictly concave and limb↘0[bqT−1(b)] = limb↘0[bĜ′T (b)] = 0.

Inductive step: Suppose that Qt(b) is continuous, twice differentiable, weakly in-

creasing, strictly concave on [0, 1], and satisfies limb↘0[bqt(b)] = 0 for some t ≤ T − 1.

Next, we show that Qt−1(b) has the same properties. Before we proceed, note that

Qt(0) = 0 for all t ≤ T − 1.

It is straightforward to verify that Qt−1(b) is continuous and twice differentiable

from its definition. Further, it can be verified from the concavity of Qt(b) that b/Qt(b)

is strictly increasing in b. Because Qt(b), Ĝt(b), and b/Qt(b) are all increasing, Qt−1(b)

is an increasing function.

Next, we prove the strict concavity of Qt−1(b). Carrying out the algebra, we can

obtain that

qt−1(b) = qt(b)

[
Ĝt

(
b

Qt(b)

)
− Ĝ′t

(
b

Qt(b)

)
b

Qt(b)

]
+ Ĝ′t

(
b

Qt(b)

)
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and

q′t−1(b) = q′t(b)︸︷︷︸
<0

[
Ĝt

(
b

Qt(b)

)
− Ĝ′t

(
b

Qt(b)

)
b

Qt(b)

]
︸ ︷︷ ︸

>0

+ Ĝ
′′

t

(
b

Qt(b)

)
︸ ︷︷ ︸

<0

[
Qt(b)− bqt(b)

Qt(b)

]
︸ ︷︷ ︸

>0

[
b

Qt(b)

]′
︸ ︷︷ ︸

>0

.

From the previous analysis, Ĝt(b) is strictly concave and limb↘0[bĜ′t(b)] = 0, which

implies that Ĝ
′′
t

(
b

Qt(b)

)
< 0 and

Ĝt

(
b

Qt(b)

)
− Ĝ′t

(
b

Qt(b)

)
b

Qt(b)
> 0, ∀b ∈ (0, 1).

The monotonicity of b/Qt(b) implies that Qt(b)−bqt(b)
Qt(b)

> 0 and
[

b
Qt(b)

]′
> 0. Further,

the strict concavity of Qt(b) implies that q′t(b) < 0. Therefore, q′t−1(b) < 0 and thus

Qt−1(b) is strictly concave.

Finally, we have

lim
b↘0

[
bqt−1(b)

]
= lim

b↘0

bqt(b)
[
Ĝt

(
b

Qt(b)

)
− Ĝ′t

(
b

Qt(b)

)
b

Qt(b)

]
+Qt(b)

b

Qt(b)
Ĝ′t

(
b

Qt(b)

) .

(17)

Note that

0 ≤ Ĝt

(
b

Qt(b)

)
− Ĝ′t

(
b

Qt(b)

)
b

Qt(b)
≤ Ĝt

(
b

Qt(b)

)
≤ 1 (18)

and

0 ≤ b

Qt(b)
Ĝ′t

(
b

Qt(b)

)
≤ Ĝt

(
b

Qt(b)

)
≤ 1. (19)

Equations (17) to (19), together with Qt(0) = 0 and the postulated limb↘0[bqt(b)] = 0,

imply that limb↘0[bqt−1(b)] = 0. This completes the inductive step.

Conclusion: By the principle of induction, Qt(b) is continuous, twice differentiable,

weakly increasing, strictly concave on [0, 1], and satisfies limb↘0[bqt(b)] = 0 for all

t ≤ T − 1. This concludes the proof.

Now we can prove Corollary 1. Suppose that F (·) is continuous, twice differentiable,

strictly concave, and satisfies lima↘0[f(a)a] = 0. By Lemma 11, Qt(b) is strictly

concave on [0, 1]. Further, by Lemma 8, Qt(0) = 0 and Qt(1) = 1 for all t ∈ T \{T}. It
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follows immediately that Qt(b) > b for all b ∈ (0, 1), which in turn implies that t0 = 0.

Next, suppose that F (·) is continuous, twice differentiable, and weakly convex.

Recall from the proof of Lemma 8 that Gn(·) is the inverse function of aF n−1(a)—which

implies that b = GnT (b)F nT−1
(
GnT (b)

)
—and F nT

(
GnT (b)

)
= QT−1(b). Further, the

weak convexity of F (·) implies that a ≥ F (a). Taken together, we can obtain that

b = GnT (b)F nT−1
(
GnT (b)

)
≥ F nT

(
GnT (b)

)
= QT−1(b),

from which we can conclude that t0 = T − 1. This concludes the proof.

A.8 Proof of Theorem 2

Proof. Recall the unique symmetric PBE is denoted by b∗ :=
{
b∗1(a; β1), . . . , b∗T (a; βT )

}
.

Fix an arbitrary period τ ∈ {t0 + 1, . . . , T − 1} and a player i in period τ + 1, i.e.,

i ∈ Nτ+1. We conduct the following thought experiment. Holding fixed all other play-

ers’ strategies—including those in period τ+1, if any—we modify player i’s equilibrium

bidding strategy from b∗τ+1(a; βτ+1) to

bi†τ+1(a; βτ+1) := bτ ∗(a; βτ).

For ease of exposition, denote the constructed profile of bidding strategies by b†. Fur-

ther, denote player i’s expected payoff and a period-τ player’s under b† by Πi†
τ+1 and

Π†τ , respectively.

We first show that Πτ ∗ < Πτ †. Consider an indicative period-τ player j, j ∈ Nτ ,

whose ability we denote by aj. Denote his interim expected payoff under b∗ and that

under b† by πτ ∗(aj; βτ) and πτ †(aj; βτ), respectively.

If bj := bτ ∗(aj; βτ) = 0, then the period-τ player loses under both b∗ and b†,

indicating πτ ∗(aj; βτ) = πτ †(aj; βτ) = 0. If bj > 0, then we have bj ≥ βτ and

πτ ∗(aj; βτ) = F nτ−1(aj)Qτ(bj)− bj/aj

= F nτ−1(aj)Qτ+1(bj)F nτ+1

(
a∗τ+1(bj)

)
− bj/aj,
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where the second equality follows from (3). Similarly, we have

πτ †(aj; βτ) = F (áj)F nτ−1(aj)Qτ+1(bj)F nτ+1−1
(
a∗τ+1(bj)

)
− bj/aj,

where áj is defined as

áj :=

 a∗τ (βτ ), if nτ = 1 and a∗τ (βτ ) < aj ≤ a∗∗τ (βτ ),

aj, otherwise,

and satisfies b∗τ (á
j; βτ ) = b∗τ (a

j; βτ ) > 0. It is straightforward to verify that

πτ ∗(aj; βτ) < πτ †(aj; βτ) ⇐⇒ F
(
a∗τ+1(bj)

)
< F (áj) ⇐⇒ a∗τ+1(bj) < áj. (20)

It follows immediately from b∗τ (á
j; βτ ) = bτ ∗(aj; βτ) > 0 that πτ ∗(áj; βτ) > 0, from

which we can conclude

Qτ+1(bj)F nτ+1−1
(
a∗τ+1(bj)

)
− bj/áj > 0. (21)

Further, it follows from the definition of a∗τ+1(·) [see Equation (4)] that

π̃τ+1

(
bj, a∗τ+1(bj)

)
= Qτ+1(bj)F nτ+1−1

(
a∗τ+1(bj)

)
− bj/a∗τ+1(bj) ≤ 0. (22)

Combining (21) and (22) yields

a∗τ+1(bj) ≤ bj

Qτ+1(bj)F nτ+1−1
(
a∗τ+1(bj)

) < áj.

The above condition, together with (20), implies that πτ ∗(aj; βτ) < πτ †(aj; βτ) and

Πτ ∗ = E
[
πτ ∗(aj; βτ)

]
< E

[
πτ †(aj; βτ)

]
= Πτ †, (23)

where the expectation is taken with respect to both aj and βτ .

To complete the proof, first note that Π∗τ+1 ≥ Πi†
τ+1 by the definition of PBE.

Moreover, it follows immediately from the construction bi†τ+1(a; βτ+1) := bτ ∗(a; βτ)

that Πi†
τ+1 ≥ Πτ †. These inequalities, together with (23), imply that Π∗τ+1 ≥ Πi†

τ+1 ≥
Πτ † > Πτ ∗.
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A.9 Proof of Corollary 2

Proof. The corollary follows immediately from Theorem 2 and Corollary 1.

A.10 Proof of Lemma 5

Proof. Fixing an arbitrary architecture n ≡ (n1, . . . , nT ), with nt ≥ 1 for all t ∈
{1, . . . , T} and T ≥ 2, it suffices to show that

WP ∗1 (a;n) < FN−1(a) < WP ∗T (a;n), for almost every a ∈ (0, 1).

We first prove that WP ∗1 (a;n) < FN−1(a) for all a ∈ (0, 1). Consider a repre-

sentative period-1 player i ∈ N1. Recall β1 ≡ 0. The inequality obviously holds if

bi := b∗1(ai; β1) = 0, and it remains to consider the case where bi > 0. Player i’s

expected equilibrium payoff is

π∗1(ai;n) := WP ∗1 (ai;n)− bi

ai
> 0. (24)

Fixing ` ∈ {2, . . . , T}, we have that

WP ∗1 (ai;n) = F n1−1(ai)
∏̀
t=2

F nt
(
a∗t (b

i)
)
Q`(b

i) ≤ F n`−1
(
a∗`(b

i)
)
Q`(b

i), (25)

where the equality follows from Lemma 1 and Lemma 7. Combining (24) and (25)

yields that

F n`−1
(
a∗`(b

i)
)
Q`(b

i)− bi

ai
> 0. (26)

From (3), (4), and (5), we have that π̃`
(
bi, a∗`(b

i)
)
≤ 0, which is equivalent to

F n`−1
(
a∗`(b

i)
)
Q`(b

i)− bi

a∗`(b
i)
≤ 0. (27)

Comparing (26) with (27) yields that ai > a∗`(b
i) for all ` ∈ {2, . . . , T}, which in turn

implies that

WP ∗1 (ai;n) = F n1−1(ai)
T∏
`=2

F n`
(
a∗`(b

i)
)
< F n1−1(ai)

T∏
`=2

F n`(ai) = FN−1(ai).
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Next, we prove that FN−1(a) < WP ∗T (a;n) for almost every a ∈ (0, 1). Fix a ∈
(0, 1), β ∈ [0, 1], and (t, `), with 1 ≤ t < ` ≤ T . Following a similar argument as in the

previous analysis, we can show that if b∗t (a; β) > 0, then

a > a∗`
(
b∗t (a; β)

)
. (28)

Consider a representative period-T player, j ∈ NT , with ability aj ∈ (0, 1). By

(28), we have aj > a∗T
(
b∗1(aj; 0)

)
. Note that a∗T

(
b∗1(a; 0)

)
weakly increases with a and

thus is continuous almost everywhere. We can focus on the case where a∗T
(
b∗1(a; 0)

)
is

continuous at a = aj. Therefore, there exists ε > 0 such that aj > a∗T
(
b∗1(aj + ε; 0)

)
.

Let a := aj + ε. It follows immediately that

a > aj > a∗T
(
b∗1(a; 0)

)
. (29)

It is useful to prove the following intermediate result.

Lemma 12 Fix an arbitrary architecture n ≡ (n1, . . . , nT )—with nt ≥ 1 for all t ∈
{1, . . . , T} and T ≥ 2—and consider an indicative period-T player j ∈ NT . He wins

the contest in the unique PBE if a > aj
′

for all j′ ∈ N1 and aj > aj
′

for all j′ ∈
N \

(
{j} ∪ N1

)
.

Proof. Fix an ability profile a := (a1, . . . , aN) such that a > aj
′

for all j′ ∈ N1 and

aj > aj
′

for all j′ ∈ N \
(
{j} ∪ N1

)
. Let ı denote the index of the provisional winner

by the end of period T − 1 given that all players use the equilibrium strategy and t

the period he moves. Then βT = b∗t (a
ı; βt). Evidently, the lemma holds if b∗t (a

ı; βt) = 0

and it remains to consider the situation where b∗t (a
ı; βt) > 0. We consider the following

two cases:

(a) Suppose t ≥ 2. Then we have

aj > aı > a∗T
(
b∗t (a

ı; βt)
)

= a∗T (βT ) ,

where the first inequality follows from the postulated ı /∈ N1 and the second

inequality from (28).
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(b) Suppose t = 1. Then we have

aj > a∗T
(
b∗1(a; 0)

)
≥ a∗T

(
b∗1(aı; 0)

)
= a∗T (βT ) ,

where the first inequality follows from (29).

To summarize, if b∗t (a
ı; βt) > 0, then aj > a∗T (βT ), indicating that player j places a

positive amount of bid in equilibrium. Therefore, he outbids all players up to period T−
1. Next, note that aj > aj

′
for all j′ ∈ NT by assumption; together with Lemma 1(iii),

player j outbids all of his contemporaneous rivals in period T and wins the contest.

By Lemma 12, player j’s expected winning probability, WP ∗T (aj;n), can be bounded

from below by

WP ∗T (aj;n) ≥ F n1(a)F (
∑T
t=2 nt)−1(aj) > FN−1(aj).

This concludes the proof.

A.11 Proof of Lemma 6

Proof. Fix an indicative player i ∈ N and consider the following two cases:

(a) All other players choose to move in the last period. If player i chooses to move in

period 1, the resultant contest architecture is n̂ = (1, N − 1) and his equilibrium

payoff in this subgame is Π∗1(n̂). If player i chooses to move in the last period, all

players move simultaneously in the second-stage game and his equilibrium payoff

amounts to ΠSIM . By (9), we have Π∗1(n̂) < ΠSIM .

(b) At least one of player i’ opponents chooses not to move in the last period. Denote

the resultant contest architecture when player i chooses to move in period 1 and

that when he chooses to move in period L by n̂′ and n̂′′, respectively. Note that

n̂′ degenerates to a simultaneous-move contest if all other players choose to move

in period 1 and a sequential-move one otherwise. By (9), we have Π∗1(n̂′) ≤ ΠSIM .

Next, note that n̂′′ is a sequential-move contest. Denote the number of periods

with at least one player by T̂ ′′. Clearly, player i’s equilibrium payoff under n̂′′ is

Π∗
T̂ ′′

(n̂′′). Again, we can obtain ΠSIM < Π∗
T̂ ′′

(n̂′′) from (9). Therefore, we have

Π∗1(n̂′) ≤ ΠSIM < Π∗
T̂ ′′

(n̂′′).
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To summarize, moving in period L yields a strictly higher payoff to player i than

moving in period 1. This concludes the proof.

A.12 Proof of Theorem 3

Proof. The theorem follows immediately from Lemma 6.

A.13 Proof of Theorem 4

Proof. Fixing a contest architecture n ≡ (n1, . . . , nT ) and θ ∈ [0, 1], denote a sym-

metric PBE of the contest game, if it exists, by {b∗t (a; βt)}Tt=1, with slight abuse of

notation. Recall that the sequence of functions {Qt(b; θ), a
∗
t (β; θ), π̃t(b, a; θ)}Tt=1 is de-

fined by (10), (11), and (12). By arguments similar to the case of θ = 1, we can

show that Lemmas 1, 3, 4 and 7 extend to θ ∈ [0, 1]. The proof of the existence and

uniqueness of symmetric PBE resembles that of Theorem 1, except that π̌t(ǎ, a; β) is

now defined as

π̌t(ǎ, a; βt) := Qt

(
b∗t (ǎ; βt); θ

)
F nt−1(ǎ)

[
1− (1− θ)b∗t (ǎ; βt)/a

]
− θb∗t (ǎ; βt)/a,

and the differential equation that governs a period-t player’s bidding strategy b∗t (a; βt)—

given that nt ≥ 2 and b∗t (a; βt) is continuous in some interval Uã = (ã, ã+ ε)—is

(nt − 1)Qt

(
b∗t (a; βt); θ

)
F nt−2(a)f(a)

[
a− (1− θ)b∗t (a; βt)

]
+ (b∗t )

′(a; βt)a
∂π̃t(b, a; θ)

∂b

∣∣∣∣
b=b∗t (a;βt)

= 0.

The proofs of the later-mover advantage and the endogenous timing result are similar

to those in Theorem 2 and Theorem 3 and omitted for brevity.
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